• 제목/요약/키워드: 진화전략 알고리즘

검색결과 78건 처리시간 0.027초

NIPD게임의 진화적 전략학습에서 플레이어 수와 협동의 관계 (Relationship of Cooperation and Number of Players in Evolutionary Strategy Learning in NIPD Game)

  • 서연규;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.85-88
    • /
    • 1998
  • 진화이론은 생명체들간의 투쟁과 적자생존의 원칙에 근거를 두고 있다. 그 중 협동으로의 진화는 공생이나 기생관계에 있는 생물들에서 발견되어 사화학, 생물학, 경제학 등의 분야에서 계속적인 관심의 대항이 되어 왔다. 특히 생명체들간에 존재하는 끊임없는 경쟁과 협동의 관계를 시뮬레이션하는 죄수의 딜레마 게임은 지금까지 많은 연구가 진행되어왔다. 죄수의 딜레마 게임이 시작된 근거는 협동으로의 진화에 관한 연구에서 시작되었다고 볼 수 있다. 대부분의 연구가 2명이 하는 죄수의 딜레마 반복게임인 2IPD에 집중되어 있는데 2IPD는 실제 세계에 적용시키는데 한계가 있기 때문에 보다 실세계에 가까운 형태를 모델링하는 N명 죄수의 딜레마 반복 게임(NIPD)에 관한 연구가 진행되고 있다. 이 논문에서는 진화 알고리즘을 이용하여 NIPD게임에서 게임자의 수와 협동으로의 진화와의 관계, 즉 죄수의 수가 증가함에 따라 협동의 정도는 어떻게 나타나는 가에 대해 고찰한다. 여러차례의 반복 시뮬레이션 결과 게임자의 수가 적을때는 대부분이 협동으로 진화하나 게임자의 수가 증가할수록 협동으로의 진화가 어렵다는 사실을 확인할 수 있었다.

  • PDF

진화 알고리즘에서의 벡터 휴리스틱을 이용한 조합 최적화 문제 해결에 관한 연구 (Vector Heuristic into Evolutionary Algorithms for Combinatorial Optimization Problems)

  • 안종일;정경숙;정태충
    • 한국정보처리학회논문지
    • /
    • 제4권6호
    • /
    • pp.1550-1556
    • /
    • 1997
  • 본 논문에서는 진화 알고리즘에 기반하여 조합 최적화 문제를 해결하고자 한다. 진화 알고리즘은 대규모 문제 공간에서 최적화 문제를 해결하는데 적합한 알고리즘이다. 본 논문의 조합 최적화의 예는 경수로 원자로로부터 나온 폐연료를 중수로에서 재사용하는데 필요한 폐연료의 조합 문제이다. 이와 같은 조합 최적화 문제는 0/1 knapsack 문제와 같이 NP-Comprete 문제에 해당한다. 이러한 문제를 해결하기 위해서는 고전적인 진화 알고리즘의 전략에 기반하여 랜덤 연산자를 이용하여 평가 함수 값이 좋은 방향으로만 탐색을 수행하는 방법, 그리고 벡터 연산자를 이용하여 최적의 해를 보다 빨리 얻을 수 있는 휴리스틱을 사용하는 방법이 있다. 본 논문에서는 중수로 연료 조합 문제 영역의 모든 지식을 벡터화하여 벡터의 연산만으로 가능성 검사, 해를 평가하는 방법을 소개한다. 또한 벡터 휴리스틱이 고전적인 진화 알고리즘에 비해 어느 정도의 성능을 보이는지 비교한다.

  • PDF

복합 유전자 알고리즘에서의 국부 탐색을 위한 셀룰러 학습 전략 (A Cellular Learning Strategy for Local Search in Hybrid Genetic Algorithms)

  • 고명숙;길준민
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권9호
    • /
    • pp.669-680
    • /
    • 2001
  • 유전자 알고리즘(GA:Genetic Algorithm)은 최적화 문제를 풀기 위해 생물학적 진화(evolution) 과정을 모방한 최적화 알고리즘이다. 유전자 알고리즘은 복잡한 상태 공간에서 최적 해를 찾기 위해 전통적인 최적화 기법과는 달리 유향적 임의 탐색을 행한다. 학습에 해당하는 국부 탐색(local search)을 유전적 알고리즘은 exploration 탐색과 exploitation 탐색의 균형을 유지시켜 줄 수 있는 한 방법이다. 모집단 내의 각 개체가 진화 과정 중에 학습한 유전적 특질들은 그 다음 세대에서 되물림 되며 이러한 학습(learning) 과정을 유전자 알고리즘과 결합시킴으로써 탐색 속도의 향상을 기대할 수 있다. 이 논문에서는 함수 최적화를 위해 속도를 개선한 셀룰러 학습을 기반으로 하는 유전자 알고리즘을 제안한다. 제안하는 셀룰러 학습 전략은 셀룰러 오토마타의 주기성과 수렴성을 기반으로 하며, 유기체가 그 개체의 생명 주기의 한 세대에서 얻게되는 지식과 경험들을 자손에게 전달한다는 이론을 바탕으로 한다. 제안한 셀룰러 학습 전략의 효율을 기존의 복합 유전자 알고리즘에서의 라마키안 진화 및 볼드윈 효과와 비교하였다. 다양한 테스트 베드 함수에 대한 실험을 통하여 셀룰러 학습에 의한 개체의 국부적 향상이 전체적인 성능 향상에 기여함을 알 수 있었고 제안한 학습 전략이 기존의 방법보다 더 빨리 전역 최적 해를 찾을 수 있음을 증명하였다.

  • PDF

게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화 (Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm)

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.491-496
    • /
    • 2002
  • 다목적 함수 최적화 문제(Multi-objective Optimization Problems : MOPs)는 공학적인 문제를 풀고자 할 때 자주 접하게 되는 대표적인 문제 중 하나이다. 공학자들이 다루는 실세계 최적화 문제들은 몇 개의 경합하는 목적 함수(objective function) 들로 이루어진 문제일 경우가 많다. 본 논문에서는 다목적 함수 최적화 문제의 정의를 소개하고 이 문제를 풀기 위한 몇 가지 접근법을 소개한다. 먼저 서론에서는 파레토 최적해(Pareto optimal solution) 의 개념을 이용한 기존의 최적화 알고리즘과 이와는 달리 게임 이론(Game Theory) 으로부터 도출된 최적화 알고리즘인 내쉬 유전자 알고리즘(Nash Genetic Algorithm Nash GA) 그리고 본 논문에서 제안하는 공진화 알고리즘의 기반이 되는 진화적 안정 전략 (Evolutionary Stable Strategy : ESS) 의 이론적 배경을 소개한다. 또 본론에서는 다목적 함수 최적화 문제와 파레토 최적 해의 정의를 소개하고 다목적 함수 최적화 문제를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론(Evolutionary Game Theory : EGT) 에 적용시킨 내쉬 유전자 알고리즘과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 가지 알고리즘을 대표적인 다목적 함수 최적화 문제에 적용하고 결과를 비교 검토함으로써 진화적 게임 이론의 두 가지 아이디어 내쉬의 균형(Equilibrium) 과 진화적 안정전략 에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해 를 탐색할 수 있음을 확인한다.

대규모 협동진화 차등진화 (Large Scale Cooperative Coevolution Differential Evolution)

  • 신성윤;탄쉬지에;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.665-666
    • /
    • 2022
  • 미분 진화는 연속 최적화 문제에 대한 효율적인 알고리즘이다. 그러나 대규모 최적화 문제를 해결하기 위해 미분 진화를 적용하면 성능이 빠르게 저하되고 런타임이 기하급수적으로 증가한다. 이 문제를 극복하기 위해 Spark(SparkDECC라고 함)를 기반으로 하는 새로운 협력 공진화 미분 진화를 제안한다. 분할 정복 전략은 SparkDECC에서 사용된다.

  • PDF

게임 이론에 기반한 공진화 알고리즘 (Game Theory Based Co-Evolutionary Algorithm (GCEA))

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.253-261
    • /
    • 2004
  • 게임 이론은 의사 결정 문제와 관련 된 연구와 함께 정립 된 수학적 분석법으로써 1928년 Von Neumann이 유한개의 순수전략이 존재하는 2인 영합게임은 결정적(deterministic)이라는 것을 증명함으로써 수학적 기반을 정립하였고 50년대 초, Nash는 Von Neumann의 이론을 일반화하는 개념을 제안함으로써 현대적 게임이론의 장을 열었다. 이후 진화 생물학 연구자들에 의해 고전적인 게임 이론의 가정에 해당하는 참가자들의 합리성(rationality) 대신 다윈 선택(Darwinian selection)에 의해 게임의 해를 탐색하는 것이 가능하다는 것이 밝혀지게 되었고 진화 생물학자 Maynard Smith에 의해 진화적 안정 전략(Evolutionary Stable Strategy: ESS)의 개념이 정립되면서 현대적 게임 이론으로써 진화적 게임 이론이 체계화 되었다. 한편 이와 같은 진화적 게임 이론에 관한 연구와 함께 생태계의 공진화를 이용한 컴퓨터 시뮬레이션이 1991년 Hillis에 의해 처음으로 시도되었으며 Kauffman은 다른 종들 간의 공진화적 동역학(dynamics)을 분석하기 위한 NK 모델을 제안하였다. Kauffman은 이 모델을 이용하여 공진화 현상이 어떻게 정적 상태(static state)에 이르며 이 상태들은 게임 이론에서 소개되어진 내쉬 균형이나 ESS에 해당한다는 것을 보여주었다. 이후, 몇몇 연구자들 게임 이론과 진화 알고리즘에 기반한 연산 모델들을 제시해 왔으나 실용적인 문제의 적용에 대한 연구는 아직 미흡한 편이다. 이에 본 논문에서는 게임 이론에 기반 한 공진화 알고리즘을(Game theory based Co-Evolutionary Algorithm: GCEA) 제안하고 이 알고리즘을 이용하여 공진화적인 문제들을 효과적으로 해결할 수 있음을 확인하는 것을 목표로 한다.

협력적 공진화 차등진화 (Cooperative Coevolution Differential Evolution)

  • 신성윤;이현창;신광성;김형진;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.559-560
    • /
    • 2021
  • 차등 진화는 연속 최적화 문제를 해결하기 위한 효율적인 알고리즘이다. 그러나 대규모 최적화 문제를 해결하기 위해 차등 진화를 적용하면 성능이 급격히 저하되고 런타임이 기하급수적으로 증가한다. 따라서 Spark(SparkDECC로 알려짐)를 기반으로 하는 새로운 협력 공진화 차동 진화가 제안된다. 분할 정복 전략은 SparkDECC에서 사용된다.

  • PDF

진화전략 기반 경로탐색 알고리즘을 활용한 선박경제운항시스템 (Economic Ship Routing System by a Path Search Algorithm Based on an Evolutionary Strategy)

  • 방세환;권영근
    • 한국통신학회논문지
    • /
    • 제39C권9호
    • /
    • pp.767-773
    • /
    • 2014
  • 선박경제운항이란 기상예측정보를 활용하여 연료소모량을 최소화하도록 선박을 운항하는 것으로서 최근 다양한 방법론이 연구되고 있다. 성공적인 경제운항시스템을 구현하기 위해서는 기상을 고려하여 적절하게 엔진 출력을 조절하거나 지리적 운항 경로를 바꾸는 방법이 필요하다. 그러나 지리적 운항 경로의 결정은 항해 시각에 따라 연료소모량이 변하는 동적 비용 문제임을 고려할 때 최적의 해를 찾기가 어렵다. 이에 이 논문에서는 매우 많은 지리적 후보 경로들 중에서 우수한 품질의 해를 효과적으로 탐색하기 위한 진화전략 기반 경로탐색 알고리즘을 제안하였다. 제안된 방법을 7개 노선에 대해 실험한 결과 최단거리 운항 방법에 비해 운항소요시간은 거의 차이가 없으면서도 연료소모량을 평균 1.82%, 최대 2.49% 개선시킬 수 있었다. 특히 사례 분석을 통해 제안된 방법이 악천후를 회피할 수 있는 지리적 경로를 탐색할 수 있음을 확인하였다.

Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계 (Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm)

  • 김성회;김기열
    • 정보학연구
    • /
    • 제5권4호
    • /
    • pp.73-79
    • /
    • 2002
  • 본 논문에서는 퍼지 제어기의 설계를 위한 다중 돌연변이 연산자를 갖는 Niche Meta 유전 알고리즘을 제안한다. 제안된 알고리즘에서 유전자는 유전 알고리즘에 사용되는 교배율이나 돌연변이율과 같은 구조 매개변수와 퍼지 제어기의 입$cdot$출력 소속함수를 나타내는 매개변수로 구성된다. 제안된 알고리즘은 부개체군들에 대해 퍼지 제어기의 소속함수의 매개변수를 최적화시키는 지역적 탐색을 수행하면서 전체 개체군에 대해서 최적의 구조 매개변수에 대한 전역적인 탐색을 수행한다. 다중 돌연변이 연산자는 지역적 진화의 결과에 따라 진화에 가장 적합한 돌연변이 방법으로 선택된다. 제안된 알고리즘의 효율성을 입증하기 위해 2 자유도 구륜 이동 로봇에 대한 모의 실험을 수행한다.

  • PDF

자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차 전략 최적화 (Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal)

  • 김정민;최이;박태진;류광렬
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2011년도 춘계학술대회
    • /
    • pp.218-219
    • /
    • 2011
  • 본 논문은 컨테이너 운송을 위한 AGV(Automated Guided Vehicle) 배차 전략을 대상으로 한다. AGV 배차 문제는 안벽 크레인의 대기 시간과 AGV의 주행 거리를 최소화하도록 AGV에 작업을 할당하는 것이 목표이다. 터미널 환경의 동적인 특성으로 인해 계획 결과의 정확한 예측이 어렵고 수정이 빈번하기 때문에 실무에서는 의사결정 시간이 짧은 단순 규칙 기반 배차가 많이 쓰인다. 그러나 단순 규칙 기반 배차는 근시안적 특성으로 인해 배차의 다양한 성능 지표를 만족시키지 못하는 한계가 있으며 이를 극복하기 위해 본 논문에서는 복수 규칙 기반의 배차 전략을 제안한다. 복수 휴리스틱 기반 배차 전략은 여러 규칙의 가중합으로 구성되며 규칙 사이의 가중치를 최적화하기 위해 다목적 진화 알고리즘을 적용하였다. 시뮬레이션 실험을 통해 제안 방안이 기존 단일 규칙 기반 배차에 비해 더 좋은 성능을 보임을 확인하였다.

  • PDF