• Title/Summary/Keyword: 진동 억제 제어

Search Result 114, Processing Time 0.025 seconds

A Design of Power System Stabilization of TCSC System for Power system Oscillation Damping (전력 시스템의 동요 억제를 위한 TCSC용 안정화 장치 설계)

  • 정형환;허동렬;왕용필;박희철;이동철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.104-112
    • /
    • 2002
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Thyristor Controlled Series Capacitor(TCSC) using Geletic Algorithm(GA). A TCSC meddle consists of a stories capacitor and a parallel path with a thyristor valve and a series inductor. Also in in parallel, as is typical with series capacitor applications, is a metal-oxide varistor(MOV) for overvoltage protection. The proposed PSS parameters are optimized using GA in order to maintain optimal operation of TCSC which is expected to be applied in transmission system to achieve a number of benefits under the various operating conditions. In order to verify the robustness of the proposed method, we considered the dynamic response of angular velocity deviation and terminal voltage deviation under a power fluctuation and rotor angle variation.

Damping Inter-area Low Frequency Oscillations in Large Power Systems with $H_{\infty}$ Control of TCSC PARTI : TCSC Siting (TCSC의 $H_{\infty}$ 제어에 의한 대규모 전력계통의 지역간 저주파진동 억제 PartI : 설치지점 선정)

  • Kim, Yong-Gu;Sim, Gwan-Sik;Song, Seong-Geun;Kim, Yeong-Hwan;Nam, Hae-Gon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.226-232
    • /
    • 2000
  • This paper presents application results of the augmented matrix eigen-sensitivity theories to TCSC siting problem for damping the inter-area low frequency oscillation in the large KEPCO system. First and second-order eigen-sensitivities of the inter-area low frequency oscillation in the large KEPCO system. First and second-order eigen-sensitivities of the inter-area mode are computed fro changes in susceptance of the transmission lines. The lines having high sensitivity are chosen as the initial candidates for installing TCSC. Then for each of the chosen candidates, Bodeplot of the transfer function with line susceptance as the input and the bus voltage at one side of the line as the output is computed. Using the Bode plots, the lines having any zeros near the inter-area mode are screened out since design of TCSC controller is very difficult in such a case. The $H_{\infty}$ TCSC controller installed at any finally chosen candidate is found to be effective in damping the inter-area oscillation, and the proposed TCSC siting algorithm is proved to be valid. Design of $H_{\infty}$ controller is described in Part IIof this paper.

  • PDF

Study on Unsteady Flow Field around Rectangular Cylinders using Proper Orthogonal Decomposition (POD) (POD를 이용한 구조기본단면 주변 비정상흐름장 특성에 관한 연구)

  • Lee, Jae-Hyung;Matsumato, Masaru
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2008
  • In this study, the effect of an unsteady flow field around a body of aerostatic/aerodynamic forces were investigated using rectangular cylinders (B/D = 2, 3, 4, 5). Proper orthogonal decomposition (POD) was introduced to the analysis of the fluctuating pressure field that was measured on the stationary/oscillatory B/D=4 rectangular cylinder, and the characteristics of the proper functions with flow patterns were identified. In addition, the physical decoupling and interactions in the different co-existing flow patterns were investigated through POD. The comparison with the identified proper function associated with a particular flow pattern revealed that the Karman vortex is almost not affected by the separation bubble, but that the Karman vortex considerably interferes in the development of the separation bubble around the trailing edge. It can be considered that the Karman vortex induces the increment of the curvature of the substantial separated flow.

Design of Adaptive Neuro- Fuzzy Precompensator for Enhancement of Power System Stability (전력계통의 안정도 향상을 위한 적응 뉴로-퍼지 전 보상기 설계)

  • 정형환;정문규;이정필;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.14-22
    • /
    • 2001
  • In this paper, we design the Adaptive Neuro-Fuzzy Precompensator(ANFP) for the suppression of low-frequency oscillation and the improvement of system stability. Here, ANFP is designed to compensate the conventional Power System Stabilizer(PSS). This design technique has the structural merit that is easily implemented by adding ANFP to an existing PSS. Firstly, the Fuzzy Precompensator with Loaming ability is constructed and is directly learned from the input and output data of the generating unit. Because the ANFP has the property of learning, fuzzy rules and membership functions of the compensator can be automatically tuned by teaming algorithm Loaming is based on the minimization of the ems evaluated by comparing the output of the ANFP and a desired controller. Case studies show the 7posed schema can be provided the good damping of the power system over the wide range of operating conditions and improved dynamic performance of the system.

  • PDF