• Title/Summary/Keyword: 진동형 히트파이프

Search Result 39, Processing Time 0.037 seconds

ESCO Report - 진동형 히트파이프를 이용한 히트싱크의 냉각 성능에 관한 연구

  • Choe, U-Seok
    • The Magazine for Energy Service Companies
    • /
    • s.62
    • /
    • pp.58-65
    • /
    • 2010
  • 최근 가정용 컴퓨터와 노트북 등의 중앙처리장치(CPU) 속도가 급격히 빨라지고 있다. 더욱이 화석 에너지 고갈 위기에 따라 제품의 발열량은 급속도로 늘어날 전망이라는 관측이 나왔다. 때문에 에너지절약에 대한 해결이 동반된 연구가 이뤄져야 한다는 목소리가 커지고 있다. 이러한 문제를 해결하기 위해 발열원에 히트싱크를 직접 부착하는 강제대류 방식에 대한 연구가 진행되고 있고, 최근 들어 열전소자를 이용한 냉각방식과 히트파이프를 이용한 방식도 대두되고 있다. 그 중 열저항 특성 연구에 집중했던 기존 방식에서 벗어나 Pulsating Heat Pipe(PHP)를 열확산기로 적용시킨 연구방식을 소개한다.

  • PDF

Thrust and Flow Visualization according to Length of Condenser Section of Open Pulsating Heat Pipe (개방형 구조의 진동형 히트파이프의 응축부 길이에 따른 추력 및 유동 가시화)

  • Minjae Son;Jongwook Choi
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2023
  • An open pulsating heat pipe operates continuously by inflow and outflow fluids through an open-type condenser. The open pulsating heat pipe is a device capable of obtaining the thrust due to the variation of internal pressure during phase change. Therefore, the open pulsating heat pipe is a suitable device to move fluids if the heat source such as waste heat exists. Many numerical studies have not been sufficiently conducted on the open pulsating heat pipe. In this study, the numerical analysis of the open pulsating heat pipe is performed according to the length of the condenser section. The OpenFOAM software is used to obtain the thrust and the flow visualization for the open pulsating heat pipe.

The Experimental Study on Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Oscillating Heat Pipe (열전소자와 PF Type 진동형 히트파이프를 이용한 냉.난방기에 관한 연구)

  • 김종수;임용빈;조원호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.741-747
    • /
    • 2004
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type oscillating heat pipe with R-142b as a work ing fluid. The experiment was performed for 16 thermoelectric modules (6 A/15 V, size: 40${\times}$40${\times}$4 mm), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc) . Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type oscillating heat pipe were 30% by volume and 30%, respectively. The maximum cooler/heater capacity were 479W (COP : 0.47) and 630W (COP : 0.9), respectively.

A Study on temperature behavior of pulsating heat pipe with different diameter in evaporator (증발부 내경 변화에 따른 진동형 히트파이프의 온도 거동에 관한 연구)

  • Kim, Jihoon;Park, Chulwoo;Shah, Syed Abdullah;Kim, Daejoong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.10-18
    • /
    • 2019
  • In this study, the temperature behavior of Pulsating Heat Pipe (PHP) according to the diameter change were studied by limiting the diameter change to only the evaporator. To investigate operation of PHP in various heat input, heat input power was increased from 10 to 120 W. The results show operation can be divided into 3 regimes by temperature behavior. Thermal resistance was increased before start-up and decreased with increasing heat input. At 110 W heat input, thermal conductivity of 2 mm PHP was 8 .times higher compare to thermal conductivity of copper. Further, to investigate details of temperature behavior in higher heat input, FFT analysis was conducted. Based on the results, when the deviation of peak frequency in each section is lowest, the thermal resistance has lowest value.

Development of Pulsating Heat Pipe type Waste Heat Recovery Ventilator Using an used Radiator for Vehicles (자동차용(自動車用) 폐(廢) 라디에이터를 이용한 히트 파이프형 환기배열(換氣排熱) 회수기(回收器)에 관한 연구(硏究))

  • Im, Yong-Bin;Choi, Sang-Joe;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.30-37
    • /
    • 2006
  • For keeping the indoor air quality, we develop the pulsating heat pipe(PHP) type heat recovery ventilator using an used radiator for vehicles. We compare the PHP type with existing model. There are some merits that are able to change the unit number according to heat load and show us the similar performance to existing models.

Study on development of Solar Collector using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프를 이용한 태양열 집열기 개발에 관한 기초연구(I);작동유체의 내부 충진율과 경사각도의 영향)

  • Kim, Tae-Hoon;Kim, Jong-Soo;Ha, Soo-Jung;Im, Yong-Bin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1394-1399
    • /
    • 2004
  • Recently solar energy is representative in the technology development and spread of alternative energy. Specially in condition of solar collectors, they have had very various shape. This paper reports experimental study about the application of Oscillating Capillary Tube Heat Pipe to flat-plate solar collector. In conclusion, overall temperature distribution of OCHP was investigated by charging ratio and inclination angle. Respective charging ratio is 15%, 20%, 40% and respective inclination angle is horizontal, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, perpendicular. As a result of experiment, charging ratio 20% heat pipe has shown the most uniform temperature distribution and also performance of heat transfer has been the best.

  • PDF

A Study on Cooling Performance of Aluminium Heat Sink with Pulsating Heat Pipe (PHP를 결합한 알루미늄 히트싱크의 냉각성능에 관한 연구)

  • Kim, Jong-Soo;Ha, Soo-Jung;Kwon, Yong-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1016-1021
    • /
    • 2011
  • The enhancement for cooling performance of heat sink is surely necessary to guarantee the performance of electronic products. So in this paper, the cooling performances of the aluminum heat sink with pulsating heat pipe(PHP) were investigated experimentally and numerically. The pulsating heat pipe was used as a heat spreader. Working fluid of PHP was R-22. Heat inputs were 30W, 60W, 80W and 100W, respectively. Heat sink was tested for forced convection conditions with air velocity of 1 ~ 4m/s. And CFD simulations were conducted for two different heat sinks. The results showed that the cooling performance of heat sink with pulsating heat pipe was higher than that of conventional heat sink. Therefore, the pulsating heat pipe can be a good tool to improve cooling performance of heat sink.