선형(線形) 변단면(變斷面) I-형(型) 부재(部材)의 비틂에 관한 고유진동해석(固有振動解析)을 위하여 강도행렬(剛度行列)과 질량행렬(質量行列)을 유도하였다. 유도과정(誘導過程)에서 형상함수(形狀函數)는 근사적으로 가정하였다. 변단면(變斷面) 부재(部材)의 구조물(構造物)을 해석하기 위하여 본 연구에서 유도된 강도행렬(剛度行列)과 질량행렬(質量行列)을 사용하여 구한 고유진동수(固有振動數)와 변단면(變斷面) 부재(部材)를 균일단면(均一斷面) 탑형태(塔形態)로 표현하여 구한 고유진동수(固有振動數)를 비교하여 본 연구 결과 효율성과 정확성이 증진된 것을 확인하였으며 실험(實驗) 결과와도 비교하였다. 본 연구에서 유도된 강도행렬(剛度行列)과 질량행렬(質量行列)은 변단면(變斷面) I-형(型) 부재(部材)와 균일단면(均一斷面) I-형(型) 부재(部材)의 자유진동해석(自由振動解析)에 사용할 수 있으며 ?을 고려한 3차원 해석에도 유용하게 사용될 수 있을 것이다.
회전하는 축대칭 얇은 셸구조물의 진동 특성을 유한요소법에 의하여 해석하였다. 2개의 절점을 가진 Conical Frustrm 형태의 축대칭 요소를 사용하였으며 원주방향의 변위는 Fourier Series로 분해하여서 방정식의 수를 상당히 줄일 수 있었다. Sanders-Koiter의 셸이론을 사용하였으며 진 동 모우드는 회전의 영향을 설명하기 위하여 대칭 및 비대칭 모우드를 모두 고려하였다. Coriolis 행렬을 포함하는 운동방정식에서 고유 진동수를 계산하기 위해서 질량, 강성 및 Coriolis 행렬로 이루어지는 Hermitian 행렬의 Sturm Sequence Property를 이용하였으며, 좁은 밴드를 갖는 대형 행렬에 알맞는 Determinant Search 방법을 확장하여 고유진동수 및 벡터를 구하였다. 원통형 셸에 대하여 정지한 경우 계산한 고유진동수를 실험치 및 이론치와 비교한 결과 잘 일치됨을 알 수 있었다. 여러 가지 회전 속도에 대해서 얻어진 고유진동스를 이론치와 비교한 결과 잘 일치 됨을 알 수 있어\ulcorner며 회전의 영향으로 traveling wave진동의 현상이 나타남을 알 수 있었다.
Woo and Liu (2004)의 확장형 Boussinesq FEM 수치모형에서 한계점으로 지적되었던 수치진동현상과 계산 효율성이 크게 개선되었다. 수치진동을 해결하기 위해 subgrid scale stabilization method를 사용하였고, 계산효율성을 높이기 위해서 Hessian 연산자를 도입하였으며, 유속벡터에 대한 행렬 구성을 하나의 행렬로 구성하였다. 또한 추가변수에 대한 행렬은 mass lumping technique을 사용하여 대각행렬로 구성하였다. Vincent and Briggs(1989)의 파랑 굴절 및 회절에 대한 수치실험 결과 수치진동현상이 확연히 줄어 들은 것을 관찰할 수 있었으며, 수리실험 결과와도 상당히 일치하는 결과를 보였다. 이전 모형에 비해 약 10배의 계산소요시간이 줄어 향후 항만부진동이나 퇴적물 이동과 같은 현실적인 문제에 적용이 가능할 것으로 기대된다.
본 연구에서는 원통형 셀을 Donnell-Mushitari의 Thin Shell로 모델링하고, 유체의 거동은 Hankel 함수를 배제하고 유한차분법(Finite Difference Method)으로 모델링하여, 상태 벡터(State Vector)해석법, 전달 행렬 및 푸리 에 변환(Fourier Transform)을 사용, 무한 원통형 몰수체의 강제 진동을 해 석하였다.
본 논문은 다공관의 바깥쪽 공간을 칸막이로 분할한 형태의 칸막이형 소음 기에 관하여 연구한 것이다. 일차원 해석을 통하여 각 요소의 전달 행렬을 구하여 소음 성능을 계산하고 격판의 위치, 유공률(porosity)등을 변화시키면 서 소음기의 성능을 실험하여 계산결과와 비교한 후 결론을 내렸다.
선형변단면(線形變斷面) I-형(型) 부재(部材)의 3차원(次元) 공간(空間)에서의 고유진동해석(固有振動解析)을 위하여 회전관성(回轉慣性)도 포함하는 컨시스턴트 질량행렬(質量行列)을 유도하였다. 유도과정(誘導過程)에서 정확한 형상함수(形狀函數)를 사용했다. 일반적으로 많이 사용되는 변단면부재(變斷面部材)의 경사(傾斜)는 매우 작으므로 '정형식(整形式)'으로 표현된 행렬(行列)을 사용하여 변단면(變斷面) 부재(部材)를 포함하는 구조물(構造物)을 해석할 때에 신빙성 없는 결과를 얻게 된다. 이러한 수치적(數値的) 오류(誤謬)를 피하기 위하여 '급수식(級數式)'을 유도했다. 변단면(變斷面) 부재(部材)의 구조물(構造物)을 해석하기 위하여 본 연구에서 유도된 질량행렬(質量行列)을 사용하여 구한 고유진동수(固有振動數)와 변단면(變斷面) 부재(部材)를 균일단면(均一斷面)의 탑형태(塔形態)로 표현하여 ANSYS에서 구한 고유진동수(固有振動數)를 비교하여 본 연구 결과 효율성과 정확성이 증진된 것을 확인하였다. 본 연구에서 유도된 질량행렬(質量行列)은 변단면(變斷面) 부재(部材)와 균일단면(均一斷面) 부재(部材)의 자유진동해석(自由振動解析)에 사용할 수 있다.
이 논문에서 유한요소 모형은 2단계로 개선된다. 첫 단계에서는 감쇠를 무시하고, 최적화 방법을 사용하여 유한요소 모형의 질량행렬과 강성행렬을 개선한다. 최적화를 위한 목적함수는 모드시험 데이터와 유한요소해석으로부터 구한 고유진동수와 진동형으로 이루어져 있다. 두 번째 단계에서는 첫 단계에서 구한 질량행렬과 강성행렬을 고정시키고, 감쇠를 고려한다. 먼저 비례감쇠를 가정하고 감쇠행렬을 추정한 다음, 해석적인 주파수응답함수와 측정한 주파수응답함수의 차가 최소가 되도록 최적화 과정을 이용하여 감쇠행렬을 조정한다. 이와 같은 모형개선 방법을 시뮬레이션 계와 실제 외팔보에 적용하였다.
This paper presents the geometrical methodology to decouple the vibration modes of an elastically supported single rigid body in three-dimensional space. It is shown that the vibration modes can be decoupled by placing the center of elasticity at suitable locations and thereby yielding the plane(s) of symmetry for the given stiffness matrix. The developed methodology has been applied to the actuator supported by the 4-wire suspensions in optical discs, which has one plane of symmetry. For this numerical example, the axes of vibrations have been computed and illustrated with the natural frequencies. The forced response at the objective lens is represented and its geometrical interpretation has been explained as the mutual moment between the axis of vibration and the applied wrench times the line coordinates of the axis of vibration.
고유치는 여러 공학문제에서 중요하다. 예를들어 비행기의 안전성은 어떤 행렬(matrix)의 고유 치에 의해서 결정된다. 보의 고유진동수는 실제로 행렬의 고유치이다. 좌굴(buckling) 해석도 행렬의 고유치를 구하는 문제이다. 고유치는 여러 수학적인 문제의 해석에서도 자연히 발생한다. 상수계수 일계연립상미분방정식의 해는 그 계수행렬의 고유치로 구할 수 있다. 또한 행렬의 제곱의 수렬 $A,{\;}A^{2},{\;}A^{3},{\;}{\cdots}$의 거동은 A의 고유치로서 가장 쉽게 해석할 수 있다. 이러한 수렬은 연립일차방정식(비선형)의 반복해에서 발생한다. 따라서 이 강좌에서는 행렬의 고유치를 수치적으로 구하는 문제에 대하여 고찰 하고자 한다. 실 또는 보소수 .lambda.가 행렬 B의 고유치라 함은 영이 아닌 벡터 y가 존재하여 $By={\lambda}y$ 가 성립할 때이다. 여기서 벡터 y를 고유치 ${\lambda}$에 속하는 B의 고유벡터라 한다. 윗식은 또 $(B-{\lambda}I)y=0$의 형으로도 써 줄 수 있다. 행렬의 고유치를 수치적으로 구하는 방법에는 여러 가지 방법이 있으나 그 중에서 효과있는 Danilevskii 방법을 소개 하고자 한다. 이 Danilevskii 방법에 의하여 특 성다항식(Characteristic polynomial)을 얻을 수 있고 이 다항식의 근을 얻는 방법 중에 Bairstow 방법 (또는 Hitchcock 방법)이 있는데 이에 대하여 아울러 고찰하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.