• Title/Summary/Keyword: 진동파워

Search Result 310, Processing Time 0.028 seconds

The evaluation of Sound Power Level and development of index for Sound Quality of Vacuum Cleaner according to performances of Sound Absorbtion Materials (흡음재 성능에 따른 진공청소기의 음향파워 평가 및 음질인덱스 개발)

  • Kwon, Hyuk-Je;Lee, Sang-Kwon;Gu, Jin-Hoi;Lee, Hyun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.112-120
    • /
    • 2008
  • Today, the use of a vacuum cleaner gave us the higher quality of life than past time, but sometimes made us w1comfortable in the house because of the specific noise that is annoying. So we need to study how sound absorbtion materials affect sound power level and sound quality with sound metrics. In this paper, we will measure and calculate sound power level for vacuum cleaner and analyze characteristics of the noise for 10 Signals according to materials positioned in vacuum cleaner. The multiple regression analysis can estimate the nonlinear characteristics of relation between subjective evaluation and sound metrics. So we will develop sound quality index for vacuum sound.

  • PDF

Underwater Radiated Noise Analysis for An Unmanned Underwater Vehicle Using Power Flow Analysis (파워흐름해석법을 이용한 무인잠수정의 수중방사소음해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Lee, Sang-Young;Hwang, A-Rom;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2012
  • Power flow finite element method(PFFEM) combining power flow analysis(PFA) with finite element method is efficient for vibration analysis of a built-up structure, and power flow boundary element method(PFBEM) combining PFA with boundary element method is useful for predicting the noise level of a vibrating complex structure. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the unmanned underwater vehicle(UUV) in water. PFFEM is employed to analyze the vibrational responses of the UUV, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate underwater radiation noise. Numerical simulations are presented for the UUV in water, and reliable results have been obtained.

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF

A Study on the Computation and Application of Sound Power Level for Road Traffic Noise of Renewal Area (개발 예정지역 도로교통소음 음향파워레벨 산정과 응용에 관한 연구)

  • Kim, Deuk-Sung;Chang, Seo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.635-644
    • /
    • 2005
  • This paper is. a study on relation between road traffic noise(RTN) and sound power level(PWL). At present, many experimental formulae and prediction formulae are used for prediction of RTN. But these formulae are difficult to appiy to the metropolitan area because these formulae are inaccurate in the different condition from reference condition. This paper calculate RTN and PWL of each prediction formula, choose the best one and make a noise map of the subject area. Procedure is as follows. First, calculate $L_{eq}$ of RTN using experimental formulae and prediction formulae. Second, calculate PWL using $L_{eq}$ of RTN and distance attenuation for point source at semi-free field. Third, choose the most accurate formula. And finally, make a noise map of the subject area at present and future. The result using noise map will be able to apply to application field. Noise mapping tool used on this paper is Raynoise program using Ray Tracing Method(RTM), Mirror Image Source Method(MISM) and Hybrid Method(HM).

Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경)

  • Song, Min-Keun;Oh, Ki-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

Sound Power Level of Electric Home Appliances according to Measurement Method (측정방법별 가전제품의 음향파워레벨)

  • Kang, Dae-Joon;Gu, Jin-Hoi;Lee, Jae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.335-346
    • /
    • 2009
  • As the economy has grown and the main industry in Korea has been changed from secondary industry to tertiary industry, the importance of indoor environment has been a matter of common concern, in which one of the main concerns is to improve the indoor acoustic conditions. However, even though this is required more than before, there are no measures to protect the human being from the noise of electric home appliances. This is owing to the absence of the data about sound power level of electric home appliances. So, we investigate the sound power level of them and analyze the acoustical characteristics of each one. First, we tried to investigate the sound power measurement method of each electric home appliance. After it we test the sound power level of them. From the survey, we can know that the vacuum cleaner is the most noisy electric home appliance, and the refrigerator is the least noisy one. This results will help us predict the indoor noise level using the basic data of sound power level.

A Study on the Evaluation Method of Sound Power for a Travelling Vehicle Using CPX and Pass-by Measurements (CPX 및 Pass-by 계측을 이용한 단독 주행 차량의 음향파워 평가 방법에 관한 연구)

  • Choi, Tae-M.;Mun, Sung-H.;Seo, Young-G.;Kim, Jin-H.;Kim, Byung-H.;Bae, Hyo-J.;Cho, Dae-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.421-427
    • /
    • 2006
  • This paper presents a novel method to determine sound power level(PWL) emitted by a travelling vehicle for road traffic noise simulation. The PWL is evaluated by the equivalent sound pressure level(SPL) measured by close proximity method and the sound power correction factor derived from the maximum SPL measured by pass-by method and the propagation attenuation of vehicle noise during the pass-by measurement. Using the method, we derive the empirical formula for PWL estimation in 1/1-octave and overall frequency bands for 8 vehicles(automobile, SUV, small truck, large bus, trailer, 3 dump trucks) tested at two road surfaces(dense graded asphalt, 30mm transverse tinning concrete) of Korean highway test road. The suggested approach, if securing sufficient data to represent the acoustic characteristics of au vehicle types, has a strong merit to be able to evaluate sound power levels for any combination of vehicle categories and traffic volumes.

  • PDF

Vibrational Power Analysis of Multi-dimensional Vibration System with Rotational Terms Included and Its Application to Compressor System (회전 변형 파워항을 고려한 진동 절연계 해석 : 컴프레서 마운트 계에의 응용)

  • Lee, Ho-Jung;Kim, Kwang-Joon;Lee, Byung-Chan;Jin, Sim-Won;Jung, In-Wha
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.618-623
    • /
    • 2001
  • In a practical vibration isolation system, vibration is transmitted from the source to the receiver through several paths such as more than one inter-connected point and multi-degree of freedom at each connection point. Therefore, the major path investigation for vibration transmission among them is often required in a point of view of isolation. For the path analysis of multi-dimensional vibration isolation system, it is useful to employ the concept of vibration power in high frequency range where radiation of noise from the receiver structure is concerned. The idea is simple to understand and formulate but rather complicated to apply in practice. For an accurate estimation of power flow especially over a high frequency range, it is well known in theory that rotational motions should be taken into consideration together with translational motions at inter-connected points. In reality, however, power transmissions related to rotational terms are often neglected mainly due to difficulties in the instrumentation. In this paper, necessary formula and measurable mechanical quantities for vibration power analysis will be reviewed and experimental results with rotational terms included for compressor system in a commercial air conditioner will be shown.

  • PDF

Field Test and Evaluation of Noise from Wind Turbine Generators at Yongdang and Hangwon in Jeju Island (제주도 용당/행원 풍력발전기 현장 소음 실증)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Shin, Su-Hyun;Jeon, Se-Jong;Lee, Saeng-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.818-821
    • /
    • 2005
  • The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from 1.5 MW wind turbine generator (WTG) at Yongdang and 660 kW WTG at Hangwon in Jeju Island. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. 1.5 MW WTG at Yongdang is found to emit lower sound power than 660 kW one at Hangwon, which seems to be due to lower rotating speed of the rotor of WTG at Yongdang. Equivalent continuous sound pressure levels (ECSPL) of 660 kW WTG at Hangwon vary more widely with wind speed than those of 1.5 MW WTG at Yongdang. The reason for this is believed to be the fixed blade rotating speed of WTG at Yongdang. One-third octave band analysis of the measured data show that the band components around 400-500 Hz are dominant for 1.5 MW WTG at Yongdang and those around 1K Hz are dominant for 660 kW WTG at Hangwon.

  • PDF

Evaluation of Structural Robustness of External Fuel Tank and Pylon for Military Aircraft under Random Vibration (랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.777-783
    • /
    • 2021
  • Aircraft are affected by various vibrations during maneuvering. These vibrations may have a fatal effect on the survival of aircraft in some cases, so the safety of components applied to the aircraft should be proven against various vibrations through random vibration analysis. In this study, the structural robustness of an external fuel tank and pylon for military aircraft was evaluated under random vibration conditions using commercial software, MSC Random. In the random vibration analysis, a frequency response analysis was performed by imposing a unit load on the boundary condition point, and then excitation was performed with a PSD profile. In this process, the required mode data was extracted through a modal analysis method. In addition, the random vibration profile specified in the US Defense Environment Standard was applied as random vibration conditions, and the PSD profile given in units of G's was converted into units of gravitational acceleration. As a result of the numerical analysis, we evaluated the structural robustness of the external fuel tank and pylon by identifying the safety margins of beam elements, shell elements, and solid elements in a numerical model for random vibration in the x, y, and z directions.