• Title/Summary/Keyword: 진동조율

Search Result 12, Processing Time 0.019 seconds

Tuning effect of L-shape on Pyeon-gyoung (편경의 기역자형 모양에 따른 조율 효과)

  • Yoo Junehee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.287-290
    • /
    • 2004
  • 편경의 기역자 모양은 하늘이 굽어 땅을 덮는다는 철학적인 의미를 가지고 있지만, 그보다는 기하학적인 구조를 통한 조율의 한 방편이었음이 가정된다. 고대 중국에서 발견된 편경은 오각형의 모양을 하고 있으나 청대에 발견된 편경은 기역자 모양을 가지고 있는 것이 이러한 가정을 뒤받침한다. 본 연구에서는 FEM 을 통한 편경의 기하학적 구조에 따른 떨기방식의 진동수를 추정하여 편경의 기역자 모양이 조율의 한 방편이었음을 제안한다.

  • PDF

Tuning of Micromachined Gyroscope by the Axial Loads (축방향 하중을 이용한 마이크로 자이로스코프의 고유진동수 조율)

  • Cho, Choong-Hyoun;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.88-91
    • /
    • 2005
  • Although the MEMS element is made through a very precise manufacturing process, usually there is the difference between the modeling design and the actual product. So tuning is required. Through the frequency tuning(changing the characteristics of device), we can calibrate the fabrication error and uncertainty. I'll propose the method of changing the natural frequency through the imposing the axial force on the anchor part to separate the sensing part and the tuning part. When the shape of section is the form of rectangular, the degree of the natural frequencies' change under axial force appears D be different. Applying a tuning force of 30 $\mu$N, the natural frequencies' difference can be reduced by 5 percent.

  • PDF

Vibrational Modes of Pyeongeong (편경의 진동모드 분석)

  • Yoo June-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.121-128
    • /
    • 2006
  • Korean pyeongyeong, a set of sixteen L-shape chime stones covering one and one third octaves, is a standard instrument in the Korean traditional court music. We analyze the vibrational mode frequencies in a pyeongyeong replica which is played at the National Center for Korean Traditional Performance Arts and pyeongyeong remains which are exhibited at King Sejong Memorial Museum. The modal shapes on the Whangjong, the 1st stone and Cheonghyurjong, the 16th stone mapped by scanning accelerometer, TV holography and STAR system. The nominal frequencies in pyeongyeong replica at the National Center for Korean Traditional Performance Arts increase linearly with the thickness of the stones and the tones are tuned in line with the musical scale of Sambunsonik. The sexagenary cycles on the pyeongyeong remains at King Sejong Memorial. which show the Year of product indirectly, are different each other and the tones are not tuned in scale. The relative frequency ratios of each modes on stones differ more than just-noticeable differences from those on the pyeongyeong replica. Modal shapes are same for the two stones regardless of the thickness.

Comparison of Sound Spectrums of Pyeonjong Remains at the King Sejong Memorial Museum and Pyeonjong Replica (세종대왕기념관의 유물 편종과 현대 편종의 음향 스펙트럼 비교)

  • Yoo, June-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.222-228
    • /
    • 2009
  • This study compared the sound spectrums of pyeonjong remains and pyeonjong replica to investigate tuning ways of bells. pyeonjong remains, exhibited at King Sejong Memorial Museum and pyeonjong replica, played at the National Center for Korean Traditional Performance Arts were analyzed. To get mode frequencies and mode shapes, pyeonjong replicas' sound spectrums were analyzed and modal analyses by TV holography were performed. Also pyeonjong remains' sound spectrum were analyzed. Nominal frequencies on the pyeonjong replica and remains showed differences in a range between 9.8 cent and 203 cent. Two facts were inferred as causes of the differences, the tuning conditions of pyeonjong remains were not good and C4 in western tempered scale was preferred as the sound standard of Kukak, whangjong. Relative ratio of higher mode frequencies to the nominal frequencies were calculated to figure out tonal differences between two pyeonjongs. The differences in relative ratio of higher mode frequencies except (3,0)a and (3,0)b modes were significants as well as beyond the just noticeable difference. These results implied that the tonal differences between two pyeonjongs could exist. More pyeonjong remains are needed to be investigated to confirm this result in addition to the analyses of alloy components and bell structure of pyeonjong remains and replica.

Vibration Control of Flexible Structures Using ER Dampers (ER 댐퍼를 이용한 유연구조물의 진동제어)

  • 최승복;이재홍
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.313-323
    • /
    • 1998
  • This paper addresses a sliding mode control of vibration in a flexible structure using ER(electro-rheological) dampers. A clamped-clamped flexible structure system supported by two short columns is considered. Three ER dampers to be operated in shear mode are designed on the basis of Bingham model of the arabic gum-based ER fluid, and attached to the flexible beam structure. After deriving the governing equation of motion and associated boundary conditions, a sliding mode controller is formulated to effectively suppress the vibration of the beam structure caused by sinusoidal and random excitations. In the formulation of the controller, parameter variations such as natural frequency deviation are treated to take into account the robustness of control system. The effectiveness of the proposed control system is confirmed by both simulation and experimental results.

  • PDF

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Tuning of TMDs for Control of Floor Vibration (건물 바닥판의 진동제어를 위한 동조질량감쇠기의 조율)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.204-211
    • /
    • 1998
  • Floors in a structure are often subject to periodic forces which induce excessive oscillations. For control of such oscillations, TMDs(Tuned Mass Dampers) have been widely used and prooved effective. But it is very difficult to estimate the natural frequency of a TMD when it is installed to a structure. Therefore to achieve the TMD properties that are required for satisfactory performances of the structure, it is necessary to tune the TMDs to the optimal state. This paper is intended to suggest the efficient tuning method for simple and economically designed TMDs and to investigate the validity of the method by installing TMDs to a real structure.

  • PDF

Development of Improved String Model for Instruments with Anjok (안족이 있는 악기의 개선된 현의 모델 개발)

  • Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.328-333
    • /
    • 2007
  • In this paper, we describe characteristics of a movable bridge called the Anjok and propose an improved string model which has delay line controller in physical modeling of the Gayageum. Movable bridge, the Anjok determines the length of vibrating string and transmits the vibration of each string to the body of the Gayageum. We analyze the variations in frequency domain and implement the Anjok model as parametric form using the first-order polynomial fitting in logarithmic scale graph, because the length of string changes fundamental frequency. In order to implement the Anjok model, frequency fitting, tension fitting and frequency fitting using leaky integrator are used. The frequency fitting using leaky integrator has the best results among those. Proposed string model with the Anjok model can represent real tuning system of the real Gayageum and the proposed model could synthesize sounds which is similar to original sounds.

Dynamic Analysis and Evaluation of a Microgyroscope using Symmetric 2DOF Planar Resonator (대칭형 2자유도 수평 공진기를 이용한 마이크로 자이로스코프의 동특성 해석 및 평가)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Conventional microgyroscopes of vibrating type require resonant frequency tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions depend on each fabricated microgyroscopes, even though the microgyroscopes are identically designed. A new micromachined resonator, which is applicable to microgyroscopes with self-toning characteristics, is presented. Since the laterally driven two degrees of freedom (2DOF) resonator was designed as a symmetric structure with identical stiffness in two orthogonal axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode tuning. A dynamic model of the resonator was derived considering gyroscopic application. The dynamic model was evaluated by experimental comparison with fabricated resonators. The microgyroscopes were fabricated using a simple 2-mask-process of a single polysilicon layer deposited on an insulator layer. The feasibility of the resonator as a vibrating microgyroscopes with self-tuning capability is discussed. The fabricated resonators of a particular design have process-induced non-uniformities that cause different resonant frequencies. For several resonators, the standard deviations of the driving and sensing frequencies were as high as 1232Hz and 1214Hz, whereas the experimental average detuning frequency was 91.75Hz. The minimum detuned frequency was 68Hz with $0.034mVsec/^{\circ}$ sensitivity. The sensitivity of the microgyroscopes was low due to process-induced non-uniformity; the angular rate bandwidth, however, was wide. This resonator could be successfully applicable to a vibrating microgyroscopes with high sensitivity, if improvements in uniformity of the fabrication process are achieved. Further developments in improved integrated circuits are expected to lower the noise level even more.

  • PDF

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.