• Title/Summary/Keyword: 진동이력분석

Search Result 64, Processing Time 0.019 seconds

Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test (차량재하시험에 의한 구조물 동특성 평가에 웨이블렛변환의 이용)

  • Park, Hyung-Ghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The vehicle loading test under the strict traffic control is generally carried out as a present practice in an evaluation process of the bearing capacity of a bridge. The quasi-static load test is recently proposed to mitigate the traffic condition of test, and analyze the disturbed acceleration time-history data of free vibration due to the ambient traffic on the bridge by Fourier transform to calculate only the natural frequencies of the bridge. The calculated frequencies have some errors due to the analysis technique as well as the influence of ambient traffic loads, and in addition to it is cumbersome to obtain the free vibration data during a quasi-static load test. In this study, the wavelet transform technique using Morlet wavelet is used to analyze the acceleration data recorded during a quasi-static load test on a bridge and calculate the natural frequencies and the modal damping ratios of the bridge. The study results show that the wavelet transform technique is a reliable and reasonable method to analyze test data and obtain the natural frequencies and the modal damping ratios of a bridge regardless of the data types i.e. free or forced vibrations.

Inelastic Response Characteristic Analysis of Frame Structures Subjected to Near Fault Ground Motion (근거리지진을 받는 골조 구조물의 비탄성응답 특성 분석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.273-284
    • /
    • 2006
  • In this study, After considering the general characteristic of Near Fault Ground Motion, the inelastic response spectrum is made to evaluate using the change of ductility and yield stiffness coefficient according to the inelastic behavior of structures which couldn't be examined through the elastic response spectrum. It is conducted to the elastic and inelastic time history analysis about the long period structure which could reflect the characteristic of Near Fault Ground Motion with the best and it is also examined the aspect of response distribution about the input data. Moreover, the response characteristic of structure is analyzed by investigating the plastic hinge for the purpose of grasp about the inelastic behavior of structure.

Preliminary Design Procedure of MR Dampers for Controlling Seismic Response of Building Structures (건축구조물의 지진응답제어를 위한 MR 감쇠기 예비설계절차)

  • Lee, Sang-Hyun;Min, Kyung-Won;Lee, Roo-Jee;Kim, Joong-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.55-64
    • /
    • 2004
  • In this paper, the preliminary design procedure of magnetorheological (MR) dampers is developed for controlling the building response induced by seismic excitation. The dynamic characteristics and control effects of the modeling methods of MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc?Wen, Bouc?Wen with mass element, and phenomenological models are investigated. Of these models, hysteretic biviscous model which is simple and capable describing the hysteretic characteristics, is used for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force. A method is proposed for optimal placement and number of MR dampers, and its effectiveness is verified by comparing it with the simplified sequential search algorithm. Numerical results indicate that the capacity, number and the placement can be reasonably determined using the proposed design procedure.

Recompression Properties of Sand in Post-Liquefaction Process According to Relative Density and Cyclic Loading History (상대밀도와 반복전단이력의 차이에 의한 모래의 액상화 후 재압축 특성)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • Ground failure by liquefaction can occur not only during shaking but also as the result of the post-liquefaction process after an earthquake. During the process of ground deformation and failure, excess pore water pressure in soil is redistributed, which can then lead to changes in the effective stress of soils. Therefore, in order to provide a further understanding of the phenomenon, we have to estimate the properties of effective stress during the recompression process in post-liquefaction as well, not only the total amount of pore water drained. The primary objectives of this study are to determine and compare the recompression properties in the post-liquefaction process in terms of the relationship between volumetric strains and mean effective stresses under the various conditions of relative density and shear stress history. In all experimental cases, the volumetric strains increase greatly in the low effective stress level, almost to the zero zone, and granite soil, which has fine grains, undergoes gradual changes in the relationship between volumetric strains and mean effective stresses compared with fine sand. And, we can also find that recompression properties in the post-liquefaction process by cyclic loading depend highly on the dissipation energy and maximum shear strain, and this fact can be obtained in all cases regardless of the existence of fine content, relative density, and loading history. Especially, granite soil having fine grains can be defined uniformly in the relationship between dissipation energy and maximum volumetric strain, while fine sand cannot be so uniformly defined.

Vibration Characteristics Evaluation According to Natural Periods of Structures and Location of a Sky-bridge (구조물의 고유진동주기 및 스카이브릿지 설치위치에 따른 진동특성평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3068-3073
    • /
    • 2013
  • Recently, studies of vibration control performance improvement of tall buildings connected by a sky-bridge have been conducted. In this study, the effect of difference of natural vibration periods of two buildings and install location of a sky-bridge on vibration control performance has been investigated. To this end, 40-story and 50-story building structures were selected as example structures. Analytical models were developed by varying the natural period difference ratio from 1.0 to 1.5. Artificial earthquake load based on KBC2009 was used as an excitation for time history analyses. Based on numerical simulation results, it has been shown that control performance for displacement and velocity of tall buildings connected by a sky-bridge is improved as the difference of natural periods of two buildings increases and the linked story becomes higher. However, in the case of acceleration response, it shows a counter trend compared to displacement and velocity responses.

Modal Characteristics of a Structure with Stiffness and Damping Eccentricit (강성 및 감쇠 비대칭 구조물의 모드 특성)

  • 김진구;방성혁
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.421-432
    • /
    • 2002
  • In this study the modal characteristics and responses of an asymmetric structure with added viscoelastic dampers were investigated for design parameters such as eccentricity of stiffness and added dampers, the loss factor of the damping materials used. For modal characteristics, variation of the quantities such as natural frequencies, modal damping ratios, modal participation factors, and dynamic amplification factors were observed, and displacements at flexible and stiff edges, and at center of mass were obtained. Based on the results, the problem of the optimum damper distribution to minimize the torsional effects was addressed, and the proposed method for optimum damper distribution was applied to a multi-story structure to verify the applicability Finally the effect of viscous and viscoelastic dampers were compared by varying the loss factor of the viscoelastic material.

A Study on the Risk Analysis of the RC Structure Subjected to Seismic Loading (철근콘크리트 구조물의 지진 위험성 분석에 관한 연구)

  • 이성로
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.183-192
    • /
    • 1994
  • Seismic safety of RC structure can be evaluated by numerical analysis considering randomness of earthquake motion and hysteretic behavior of reinforced concrete, which is more rational than determirustic analysis. In the safety assessment of aseismatic structures by the deterministic theory, it is not easy to consider th effects of random variables but the reliability theory and random vibration theory are useful to assess seismic safety with considering random effects. This study aims at the evaluation of sesmic damage and risk of the RC frame structure by stochastic response analysis of hysteretic system and then the calculation stages of the prob ability of failure are presented.

Environmental Approach to Blasting Effect on the Surrounding Area when the Mine Blasting (광산 발파 시 인근지역에 미치는 발파영향에 대한 환경적 접근)

  • Jeong, Beonghun;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.5-12
    • /
    • 2015
  • Since blasting noise is impact noise, it will give a sudden shock to the human. In the case, such as the blast vibration, it has given aging buildings and livestock great damage to move the vibration along ground in nearby regions. In this study, the influence of the blasting generated during excavation was analyzed for effects on regional. A couple of field and laboratory surveys about geological were carried out to figure out the geological ratio in the study-performed area. Blast vibration noise was compared to the domestic and abroad case studies and each of the institutions permissible standards established the most appropriate criteria in site condition. The vibration velocity of blasting vibration exploits the values which were measured from test blasting on the ground in order to examine blasting effect. Considering the blasting point as the shortest distance from safety facilities (farms, private houses, etc.), the examination of the influence range, which was derived from the vibration velocity of blasting vibration, was performed to figure out how the point affected the safety facilities. Three-dimensional numerical analysis was performed a time history analysis in order to analyze the behavior of the structure for a dynamic blast load, which was determined in three directions of the blast vibration value. The results of three-dimensional numerical analysis and the blasting effect of blasting vibration estimation equation blasting vibration of impact circle with accompanying test blasting were compared. And the analysis confirmed similar results figures.

Evaluation of the Seismic Performance for Domestic URM Buildings Using Nonlinear Dynamic Analysis (비선형 동적해석을 통한 국내 비보강 조적조 건축물의 내진성능 평가)

  • Baek, Eun-Rim;Kim, Jung-Hyun;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.83-92
    • /
    • 2016
  • The purpose of this study is to evaluate the seismic performance of domestic unreinforced masonry(URM) buildings using nonlinear dynamic analysis. For that, the nonlinear hysteresis models suggested in the previous research were validated for the dynamic analysis. The results of the shaking table test were compared with the dynamic analysis results using the suggested nonlinear hysteresis models. As a result, the nonlinear hysteresis models were expected to be applicable to the dynamic analysis of URM buildings. Based on the models, the dynamic analysis of domestic URM buildings varying the number of stories and opening ratio was carried out. The analysis results showed that most of the domestic URM buildings were very vulnerable to design earthquake in Korea.

Mössbauer Study of AIFeO3 (AIFeO3 물질의 Mössbauer 분광학적 연구)

  • We, Jee-Hoon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.14-17
    • /
    • 2006
  • [ $AIFeO_3$ ]has been studied by x-ray diffraction (XRD), vibrating sample magnetometer, Mossbauer spectroscopy. The crystal structure is found to orthorhombic with the lattice parameters being $a_0=4.983\;{\AA},\;b_0=8.554\;{\AA},\;c_0=9.239\;{\AA}$, Magnetic hysteresis curve for $AIFeO_3$ showed weakly ferromagnetic phase at room temperature and a asymmetric shape dependent on the direction of applied field at low temperature. The Curie temperature determined by the temperature dependence of magnetization is 250 K. Mossbauer spectra of $AIFeO_3$ have been taken from 4.2 K to 295 K. Isomer shift at room temperature are found to be $0.11\~0.32\;mm/s$, which is consistent with ferric state. The absorption lines widths become broader with increasing temperature, which is attributed to the Fe ions distribution of each cation site and anisotropy energy difference of each sublattice.