• Title/Summary/Keyword: 진동응답 분석

Search Result 381, Processing Time 0.037 seconds

Dynamic Analysis of Steel Box Girder Bridge installed with Skid Proof Pavement (미끄럼방지포장을 설치한 강상자형 교량의 동적해석)

  • Park, Pyoung Deuk;Chung, Jae Hoon;Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.329-337
    • /
    • 2002
  • The skid proof pavement is used for safety driving on curved bridges and high level roads. This study analyzed the effect of skid proof pavement on the bridge using actual spot test and computer analysis. In the actual spot test, the natural frequency and dynamic deflection of steel box girder bridges were measured before and after skid proof pavement. Likewise, in the computer analysis, the dynamic response of the finite element model was evaluated. The model was based on real steel box girder bridge according to the skid proof pavement. The analyzed results provide basic data on the effect of skid proof pavement on road structure.

Hybrid computational analysis of microspeaker for mobile phone (핸드폰 용 마이크로스피커 전산해석)

  • Park Seok-Tae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.495-498
    • /
    • 2004
  • 핸드폰등에 사용되고 있는 마이크로스피커를 개발하는 과정에서 마이크로스피커의 진동특성과 음향특성 을 전산해석하였다. 해석과정에서 기초 데이터를 얻기 위하여 하이브리드 방법을 이용하여 각 부품들의 제원 및 마이크로스피커 모델링을 위한 매개변수들을 규명하였다. 전산 해석 결과와 측정한 전기 임피던스 및 음향 응답특성은 잘 일치함을 보였다. 또한, 진동특성을 분석하여 각 주파수에서의 다이아프램의 변위등 진동특성을 분석하여 다이아프램등의 형상에 따른 이상 진동현상 등을 파악할 수 있었다. 전산해석 방법을 이용하면 최적 음향특성을 위한 마이크로스피커의 다이아프램 형상 및 전자기 회로 개선에 사용할 가능성을 알 수 있었다.

  • PDF

지진감시설비의 과도진동에 대한 원인 분석

  • 주광호;전규식;이종림
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.352-358
    • /
    • 1996
  • 원자력발전소의 지진에 대한 절대안전성을 확보하기 위하여 설치된 지진감시설비망에 과도진동이 유발되는 사례가 자주 발생하여, 이에 대한 원인을 분석하고 대책을 강구하는 연구를 수행하였다. 현재 울진1,2호기 배관상에 설치되어 있는 가속도계 및 응답스펙트럼기록기에 작업자의 실수로 인한 인위적인 충격이나 배관진동에 의해 과도한 진동이 발생할 수 있다는 개연성을 밝혀 내고 이러한 지진감시설비의 개선 및 적합한 설치장소에 대하여 의견을 제시할 수 있는 계기를 마련하였다.

  • PDF

Analysis of Structural Stability and Optical Performance for Optical Equipment During In-flight Vibration (항공기 진동에 대한 광학 탑재 장비 구조 안정성 및 광학 성능 분석)

  • Jo, Mun Shin;Kim, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.897-904
    • /
    • 2017
  • Optical equipment consists of various components, and a detector is mounted and operated on aircraft, tanks, and warships for target detection and classification. The structural stability and optical performance of aeronautical optical equipment operated at several kilometers of altitude are degraded owing to vibration generated in the aircraft. It is necessary to verify the structural stability and optical performance requirements of the equipment in vibration environment conditions during the design phase. In this study, vibration environment conditions were analyzed using a test standard and the measurements of the vibration generated in aircraft. The conditions were classified as endurance and operating vibration conditions for structural stability and optical performance verification, respectively. The structural stability was verified according to natural frequency analysis, response analysis for the endurance vibration condition, and static analysis. The optical performance was verified by applying the vibration response analysis results to the optical design/analysis program.

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge (공용 사장교의 동적특성을 반영하는 버페팅 응답보정법)

  • Kim, Byeong Cheol;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.

Analysis for Driving Shock Resistance of Military Vehicle (군용 차량 주행 내충격 분석)

  • Jeon, Jong-Ik;Lee, Jong-Hak;Jeong, Eui-Bong;Kang, Kwang-Hee;Choi, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.267-272
    • /
    • 2014
  • In this paper, we analyze the characteristics for the driving shock resistance of the military vehicle through the bump test. Prior to the experiment, theoretical analysis was performed by using the SRS(shock response spectrum) and VRS(vibration response spectrum) analysis method. And we estimated the characteristics for the driving shock resistance of the military vehicle. Bump test was performed using the acceleration sensor and the driving test at a different speed. We evaluated the characteristics for the driving shock resistance of the military vehicle based on the result. And predicted values were compared with the theoretical analysis. In addition, we evaluated the results of the theoretical prediction of the SRS and the VRS analysis. And we evaluate the suitability of the prediction method at military vehicle shock analysis.

  • PDF

A Study on Design of a Mass-Spring System for Force-Balance Servo Accelerometer (힘평형 서보 가속도계의 질량지지 장치 설계연구)

  • Kim Young-Dam;Nam Hyo-Duk;Lee Doo-Hee;Chang Ho Gyeong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.279-282
    • /
    • 2000
  • 진동가속도를 감지하는 힘평형 서보 가속도계의 성능특성을 결정하는 질량지지 장치를 4개의 팔로 구성된 형태로 설계하고 응답특성을 조사하였다. 스프링의 길이, 폭, 두께에 따른 질량지지 장치의 응답특성을 유한요소법을 이용하여 계산하고, 이를 바탕으로 힘평형 서보 가속도계의 감도, 사용주파수 범위 및 동적 범위를 예측하였다. 그리고 레이저 간섭계를 이용하여 힘평형 서보 가속도계의 각각의 진동 주파수 및 가속도의 크기에 따른 간섭무의 수의 변화와 이때의 응답전압간을 이용하여 가속도계의 응답특성을 측정하였으며, 수치해석을 통해 얻은 결과와 비교 분석하였다.

  • PDF

Vibration Test of a Full-Scale Five-Story Structure with Viscoelastic Dampers: Damper Design and Test for Response (점탄성 감쇠기가 설치된 실물크기 5층 건물의 진동실험: 감쇠기의 설계 및 응답실험)

  • 민경원;이상현;김진구;이영철;이승준;김두훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.9-15
    • /
    • 2003
  • This paper presents a design procedure for viscoelastic dampers to be installed in a full-scale steel structure and observes their vibration control effect, based on the excitation method and the dynamic characteristics of the structure investigated in the companion paper, Additional damping ratios required to reduce the maximum displacement to a given level were obtained by convex model. The size of dampers was determined by observing the change in modal damping ratio due to the change in damper stiffness using the modal strain energy method, The effect of the supporting braces was also considered in the determination of the modal properties. Two viscoelastic dampers were installed at the first and second inter-stories, respectively and their response reduction is verified.