• Title/Summary/Keyword: 진동음향

Search Result 1,564, Processing Time 0.019 seconds

Development of Automatic Calibration System for PC-Based Pure Tone Audiometer (PC 기반 순음청력검사기를 위한 자동보정시스템 개발)

  • Kim, Jin-Dong;Kang, Deok-Hun;Song, Bok-Deuk;Lee, Il-Woo;Kong, Soo-Keun;Kwon, Soon-Bok;Jeon, Gye-Rok;Shin, Bum-Joo;Wang, Soo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2586-2594
    • /
    • 2010
  • A pure tone audiometer should be able to produce both pure tone and masking noise with exact sound pressure level and frequency. For such purpose, it is unavoidable to periodically calibrates pure tone audiometer. However, manual acoustic calibration requires not only attention but also long time. It is possible to execute automatically calibration using software if it is PC-based pure tone audiometer. In this paper, we describe auto-calibration software for PC-based pure tone audiometer and dedicated sound level meter which has been implemented upon PC by us. To verify auto-calibration module, we examine whether output of PC-based audiometer calibrated through auto-calibration of this paper satisfies RETSPL of IEC or not.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

Comparison of voice range profiles of modal and falsetto register in dysphonic and non-dysphonic adult women (음성장애 성인 여성과 정상음성 성인 여성 간 진성구와 가성구의 음성범위프로파일 비교)

  • Jaeock Kim;Seung Jin Lee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.67-75
    • /
    • 2022
  • This study compared voice range profiles (VRPs) of modal and falsetto register in 53 dysphonic and 53 non-dysphonic adult women with gliding vowel /a/'. The results shows that maximum fundamental frequency (F0MAX), maximum intensity (IMAX), F0 range (F0RANGE), and intensity range (IRANGE) are lower in the dysphonic group than in the non-dysphonic group. F0MAX and F0RANGE are significantly higher in falsetto register than modal register in both groups. IMAX and IRANGE are significantly higher in falsetto register in the non-dysphonic group, but those are not different between two registers in the dysphonic group. There was no statistically significant difference in minimum F0 (F0MIN) and minimum intensity (IMIN) between the two groups. Modal-falsetto register transition occurred at 378.86 Hz (F4#) in the dysphonic group and 557.79 Hz (C5#) in the non-dysphonic group, which was significantly lower in the dysphonic group. It can be seen that both modal and falsetto registers in dysphonic adult women are reduced compared to non-dysphoinc adult women, indicating that the vocal folds of dysphonic adult women are not easy to vibrate in high pitches. The results of this study would be the basic data for understanding the acoustic features of voice disorders.

Development and Reliability of Intraoral Appliance for Diagnosis and Control of Bruxism (이갈이 진단 및 조절용 구내장치의 개발과 신뢰도 조사)

  • Kim, Seung-Won;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • The purposes of this study were to develop and introduce a novel intraoral appliance for bruxism composed of power switch and biofeedback device and further to examine inter- and intra-reliability of the appliance prior to clinical tests. The newly-developed appliance consisted of detection sensors, a central processing unit (CPU), a reactor and a storage unit and a displayer. Compact-sized, waterproof switches were selected as bruxism detection sensor and any sensor activation by clenching or grinding event was processed at the CPU and transmitted, by radio wave, to the reactor and storage unit and triggered auditory or vibratory signal, subsequently producing biofeedback to the patient with bruxism. The data on bruxing event in the storage unit can be displayed on the computer, making it possible analyzing frequency, duration and nature of bruxism. Cast models were obtained from ten volunteers with normal occlusion to evaluate reliability of the appliances. For inter-operator reliability on the intraoral appliances, each operator of the two fabricated the appliance for the same subject and compared the minimal contact forces provoking auditory biofeedback reaction in vertical, lateral and central directions. Intra-operator reliability was also investigated on the appliances made by a single operator at two separate times with an interval of two days. Conclusively, the newly-developed appliance is compact and safe to use in oral circumstance and easy to make. Furthermore, it had to be proven reliability excellent enough to apply in clinical settings. Thus, it is assumed that this appliance with the processor and the storage of data and auditory or vibratory biofeedback function is available and useful to analyze and control bruxism.