• Title/Summary/Keyword: 진동유동

Search Result 870, Processing Time 0.026 seconds

An Analysis of Flow and Noise for Vacuum Cleaner Centrifugal Fan (진공청소기 원심팬의 유동과 소음 해석)

  • 전완호;이덕주;유기완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.130-135
    • /
    • 1995
  • 본 연구에서는 30000rpm으로 회전하는 진공청소기 원심팬의 유동장을 임펠러, 디퓨저, 케이싱을 모두 고려하여 해석하였다. 또한 삼차원으로 배출되는 출구를 간단한 sink 패널로 모델하여 출구의 효과를 충분히 고려하였다. 해석된 유동장 자료를 이용하여 먼 거리에서의 음압을 예측하였다. 예측된 음압자료는 FFT를 이용하여 측정된 값과 주파수 영역에서 비교하였다. 또한 진공청소기 원심팬의 측정자료에서 보이는 광역소음특성이 임펠러에서 흘려지는 후류와류의 교란에 의한 임펠러와 디퓨저 깃의 비정상 힘이 주된 원인임을 밝혔다.

  • PDF

A Study on the Characteristics of Lift and Drag Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력과 항력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.712-718
    • /
    • 2016
  • A heat exchanger tube array in a heat recovery steam generator is exposed to hot exhaust gas flow that can cause flow induced vibrations, which could damage the heat exchanger tube array. The characteristics of flow induced vibration in the tube array need to be established for the structural safe operation of a heat exchanger. Several studies of the flow induced vibrations of typical heat exchangers have been conducted and the nondimensional PSD (Power Spectral Density) function with the Strouhal number, fD/U, had been derived using an experimental method. The present study examined the results of the previous experimental research on the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array was determined from the present CFD analysis. The present CFD analysis introduced circular cylinder tube array and calculated using unsteady laminar flow for the tube array. The characteristics of lift and drag fluctuations over the cylinder tube array was investigated. The derived nondimensional lift and drag PSD was compared with the results of the previous experimental research and the characteristics of lift and drag PSD for a circular cylinder tube array was established from the present CFD study.

A Research on the viscous flow and the hydrodynamic force due to the small-amplitude in-phase oscillation of multi-cylinders (복합 원형 실린더군의 저진폭 동위상 진동에 의한 점성유동 및 동유체력에 관한 연구)

  • Sung-Kyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.22-28
    • /
    • 1999
  • Small amplitude in-phase oscillations of multi-cylinders are considered both numerically and experimentally. Flow field is separated into inner and outer regions. The basic unsteady solution is obtained analytically and the secondary flow, termed as steady streaming flow, can be obtained numerically by using Finite Volume Code with Panel Method. The Particle Induced Velocimetry, one of whole field measurements, is introduced for comparison with numerical flow visualization quantitatively. Among the algorithms for PIV, the Three Step Vector Searching Technique is applied to reduce CPU time. Small but non-zero damping coefficient, that is important in lightly damped system can be obtained with varying number of bodies and distances.

  • PDF

Analysis of Normal Shock-Wave Oscillation in a Supersonic Diffuser (초음속 디퓨져에서 발생하는 수직충격파 진동의 이론해석)

  • 김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.36-46
    • /
    • 1998
  • Shock-wave in a supersonic diffuser flow cannot be stable even in the given pressure ratio which remains constant over time, and oscillates around a certain time-mean position. In the present study, oscillation of a normal shock-wave in a supersonic diffuser was analyzed by a small perturbation method. Upstream pressure perturbation was applied to a supersonic diffuser flow with a normal shock-wave. Stability of shock-wave was investigated by considering the diffuser pressure recovery and frequency of the pressure perturbation. The results obtained show that a stable oscillation of weak normal shock-wave is obtainable for the flow with the Mach number over 1.74. The ratio of sound pressures downstream to upstream of the shock wave increases with increase of the Mach number. The present results agree well with other analytical and experimental results.

  • PDF

Prediction of Strouhal Number of the Triangular Cylinder Bluff Bodies (삼각주형 와 발생체의 스트로우할 수의 예측)

  • 김창호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.71-78
    • /
    • 1998
  • 와(vortex) 박리는 고형물체가 유동내에서의 유체의 흐름을 방해할 때 발생하는 전 형적인 주기적 진동 현상이다. 본 연구에서는 삼각주형 실린더가 유동내에 유발하는 와 발 리 특성을 가시화 기법, 와에 의해 변조된 초음파의 파워 스펙트럼 및 유동관에서의 진동측 정 등을 통해 연구하였다. 가시화 관찰과 유동측정 실험 결과, 발생 와는 발생체 전면으로부 터 3d와 5d 사이에서 가장 안정성이 유지됨을 발견하였다. 넓은 레이놀즈 수(104≤Re≤106) 의 유동영역에서 액체와 기체원형유동의 측정 실험결과로부터 스트로우할(Strouhal) 수가 와발생체 폭(d)과 형상비(d/D)의 증가함수이며, 삼각주 단면의 높이에 반비례함을 알 수 있 었다. 또한 실험 결과로부터 실린더의 기하학적 치수로 삼각주형 실린더의 스트로우할 수를 예측할 수 있는 경험식을 제시하였다.

  • PDF

Non-dimensional Analysis of the Acoustic Impedance of perforated Elements with Bias Flow (통과하는 유동이 존재하는 천공요소의 음향 임피던스의 무차원화에 관한 연구)

  • Lee, Seong-Hyun;Ih, Jeong-Guon;Peat, K.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.920-923
    • /
    • 2004
  • 천공 요소는 자동차나 공조기 등의 유체기계의 흡/배기계에 널리 사용된다. 천공요소는 일반적으로 유동과 소음원이 동시에 존재하는 환경에서 사용되며, 유동 및 음압 레벨의 변화에 의해서 큰 영향을 받게 된다. 천공요소의 임피던스의 변화는 소음기의 음향학적 특성에 영향을 미치게 되므로, 유동이나 음압 조건이 임피던스에 미치는 영향에 대한 연구가 중요하다. 본 연구에서는 통과하는 유동이 존재하는 천공요소의 임피던스를 실험을 통하여 측정하고 경계요소법을 사용하여 예측하였다. 측정 및 예측된 임피던스를 무차원화 해석을 수행하여 영향을 미치는 인자들을 분석하였다.

  • PDF

A Study of Oscillation Characteristics of Supersonic Fluidic Oscillator With Shared Feedback Channel (공유피드백 유로를 갖는 초음속 유체진동기의 진동특성에 관한 연구)

  • Lee, SeungHeon;Park, SangHoon;Ko, HeeChang;Seo, SongHyun;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-174
    • /
    • 2020
  • A study of flow characteristics of supersonic fluidic oscillators with shared feedback channel inside was carried out. Unsteady CFD analysis were performed and the numerical results were validated by comparison with the experimental ones observed for the same operation conditions. It was found that the mass flow between individual oscillators through the shared feedback channel directly influenced on the oscillating flow mechanism inside the oscillator, and finally on the synchronization of the jet oscillations. It was also observed that the oscillator with shared feedback channel provided higher pressure loss as well as higher oscillation frequency as compared to the single oscillator of the same geometric shape.

Dynamic Stability Analysis of the Nuclear Fuel Rod Affected by the Swirl Flow due to the Flow Mixer (유동혼합기에 의한 회전유동을 고려한 핵연료 봉의 동적 안정성해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.641-646
    • /
    • 2008
  • Long and slender body with or without flexible supports under severe operating condition can be unstabilized even by the small cross flow. Turbulent flow mixer, which actually increases thermal-hydraulic performance of the nuclear fuel by boosting turbulence, disturbs the flow field around the fuel rod and affects dynamic behavior of the nuclear fuel rods. Few studies on this problem can be found in the literature because these effects depend on the specific natures of the support and the design of the system. This work shows how the dynamics of a multi-span fuel rod can be affected by the turbulent flow, which is discretely activated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was established. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

  • PDF

Numerical Study of Unsteady Supersonic Flow over Tandem Cavities (초음속 비정상 직열배치공동 유동에 관한 수치적 연구)

  • Song, Byeong Ho;Park, Nam Eun;Kim, Jae Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • The unsteady supersonic flow over tandem cavities has been analyzed by the integration of Navier-Stokes equations with the k-$\varepsilon$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. The upwind TVD scheme based on the flux vector split with the van Leer limiters is used. The results show the principal frequency is very reasonable. The principal frequency of the rear cavity due to the front cavity has been analyzed by the combination of the several aspect ratios of cavities. In the case of the front cavity of low aspect ratio, the frequencies of tandem cavities are almost same, because two shear layers developed from each cavity are mixed and developed to one shear layer. However, in the case of the front cavity of high aspect ratio, the characteristis of frequency are very different, because the second shear layer is developed in the diffused first shear layer.

Frequency Response of Turbulent Flow to Momentum Forcing in a Channel with Wall Blowing (질량분사가 있는 채널 내부 난류 유동의 외부교란에 대한 주파수 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.64-72
    • /
    • 2010
  • Due to the interaction between main oxidizer flow and the wall injected flow resulting from the regression process, a specific time characteristics identified in the frequency spectrum of streamwise velocity is generated in the hybrid rocket motor. In order to understand the response of the turbulent flow to two different types of external momentum forcing, LES analysis was conducted without considering the combustion. It turns out that both concentrated and distributed forcings do not lead to the disastrous resonance phenomenon. Energy contents are enhanced due to the added momentum but the peak frequency was not modified in the turbulent flow near the end of the rocket motor. Natural frequency of the flow system should be taken into account to further pursue the instability issue by using external forcing.