• Title/Summary/Keyword: 진동성능시험

Search Result 388, Processing Time 0.035 seconds

The Experimental Study on the Effect of Track System on the Integral Behavior of Railway Bridge (궤도시스템이 철도교량의 정.동적거동에 미치는 영향에 관한 실험적 연구)

  • Sung, Deok-Yong;Park, Yong-Gul;Choi, Jung-Youl;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.186-193
    • /
    • 2010
  • Track system and periodic live load are characteristics of railway bridges. In the design and construction of railway bridge, periodic live load increases the importance of dynamic behavior. And It is well known that behavior of railway bridge may be affected by track system in real bridge. Through experimental study, static and dynamic behaviors were investigated. Deflection and stress due to bending moment were measured, the location of neutral axis of each section, natural frequency, damping ratio were analyzed for each three track systems - girder only, installed ballast track system and installed concrete slab track system. According to measured values for the each type of track system, concrete track system increases the stiffness of bridge by 50%, and ballast system does by 7%, dynamic responses of structure change linearly with the magnitude of load and location of neutral axis of each sections varies with each track system. Damping ratio is almost equal without and with track. Therefore, the effects of track system on the integral behaviors of railway bridge can not be ignored in the design of bridge, especially in the case of concrete slab track system. So study of the quantitative analysis method for effects of track system must be performed.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

Concrete plug cutting using abrasive waterjet in the disposal research tunnel (연마재 워터젯을 활용한 처분터널 내 콘크리트 플러그 절삭)

  • Cha, Yohan;Kim, Geon Young;Hong, Eun-Soo;Jun, Hyung-Woo;Lee, Hang-Lo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.153-170
    • /
    • 2022
  • Waterjet has been comprehensively used in urban areas owing to a suitable technique for cutting concrete and rock, and low noise and vibration. Recently, the abrasive waterjet technique has been adopted and applied by the Korea Atomic Energy Research Institute to demolish concrete plugging without disturbing and damaging In-situ Demonstration of Engineered Barrier System in the disposal research tunnel. In this study, the use of abrasive waterjet in the tunnel was evaluated for practical applicability and the existing cutting model was compared with the experimental results. As a variable for waterjet cutting, multi-cutting, water flow rate, abrasive flow rate, and standoff distance were selected for the diversity of analysis. As regarding the practical application, the waterjet facilitated path selection for cutting the concrete plugging and prevented additional disturbances in the periphery. The pump's noise at idling was 64.9 dB which is satisfied with the noise regulatory standard, but it exceeded the standard at ejection to air and target concrete because the experiment was performed in the tunnel space. The experimental result showed that the error between the predicted and measured cutting volume was 12~13% for the first cut and 16% for second cut. The standoff distance had a significant influence on the cutting depth and width, and the error tended to decrease with decrement of standoff distance.

A Study on the Rejection of Dynamic Disturbance Forces in a Magnetically Suspended System Using Flux Feedback (자기력 부상 시스템에서 자속궤한을 이용한 동적 외란력의 제거에 관한 연구)

  • Kim, Jong-Ki;Lee, Key-Seo;Lee, Jun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.283-290
    • /
    • 2006
  • This study is concerned with static and sinusoidal disturbance rejection for a single periodic input disturbance with known period. In the area of active elimination of a disturbance force, the control input should have two different kinds of gains: one is to deliver a stable control and the other is a force component to cancel the external disturbance force. In this paper we employ a simple state feedback control law to make the balance beam stable and employ a linear observer to estimate the states which represent the external disturbance force components. Simulation results verify our proposed control method to reject a static and sinusoidal disturbance force.

The Research for effect of lubricant oil aging on environmental performance (자동차 윤활유의 성상 및 열화가 환경성에 미치는 영향 연구)

  • Kim, Jeong-Hwan;Kim, Ki-Ho;Ha, Jong-Han;Jin, Dong-Young;Myung, Cha-Lee;Jang, Jin-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.12-24
    • /
    • 2017
  • The main purpose of this research is for the investigation on the impact of engine oil aging on PM and DPF. It is widely known that lubricant specifications and consumption from an ICE have significantly influenced on the regulated and unregulated harmful emissions as the engine operating conditions. Considering DPF clogging phenomena with lubricant-derived soot/ash components, simulated aging mode for the DPF was newly designed for engine dynamometer testing. PM/ash accumulation cycle were developed in reflecting real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for the ash accumulation. The test duration for DPF aging reached around 100hrs with high- and low-SAPS engine oils, respectively. Using high SAPs engine oil made more PM/ash accumulation compared with low SAPs engine oils and it could accelerate fouling of EGR in engine. Fouling of EGR made effects on more harmful exhaust gases emissions. The test results on engine lubricant under engines operating conditions will deliver for the establishment of regulated and unregulated toxic emissions policy, lubricant quality standard.

Seismic Performance Evaluation of a Cone-type Friction Pendulum Bearing System (원추형 마찰진자베어링의 내진성능평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Kyung-Rock;Kim, Nam-Sik;Jung, Duk-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, a CFPBS (Cone-type Friction Pendulum Bearing System) was developed which controls the acceleration delivered to the structure to prevent damage and degradation of the critical communication equipment in case of an earthquake. The isolation performance of the CFPBS was evaluated by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced from the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with the seismic isolator system consisting of four CFPBSs. In order to verify its earthquake-resistant performance, a numerical analysis program was created from the equation of the CFPBS induced from the equations of motion. A simplified theoretical equation of the CFPBS was proposed to manufacture the equipment which could demonstrate the necessary performance. Artificial seismic waves satisfying the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and skew angle of the friction surface were considered for numerical analysis with El Centro NS (1940), Kobe NS (1995) and artificial seismic waves. The CFPBS isolation performance evaluation was based on the results of numerical analysis and the executed comparative analysis between the results from numerical analysis and the simplified theoretical equation under the same conditions.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Dynamic Interaction Evaluation of Maglev Vehicle and the Segmented Switching System (자기부상열차 차량과 분기기 동적상호작용 시험 평가)

  • Lee, Jong-Min;Han, Jong-Boo;Kim, Sung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.576-582
    • /
    • 2017
  • The switching system in a maglev train is an indispensable element for distributing train routes, and it should be designed to ensure safe operation. Unlike conventional wheels on rails, the switching track in EMS-type maglev is supported by a group of 3 to 4 steel girders. When the vehicle changes its route, the segmented track allows the girders to change from a straight position to a curved one with a small radius of curvature. Hence, the structural characteristics of the segmented switching system may affect the levitation stability of the maglev vehicle. This study experimentally evaluates the dynamic interaction between maglev vehicles and a segmented switching system. The results may be helpful for improving the switching system. The measured levitation and lateral air gaps were evaluated at a vehicle speed of 25 km/h, and the ride quality of the Maglev vehicle was determined to be "comfortable" according to the UIC 513 standard.

A comparative study of cavitation inception of naval ship's propeller using on-board noise and vibration signals (선체 부착 소음/진동 센서를 이용한 함정 추진기 캐비테이션 초생 분석 비교 연구)

  • Hongseok Jeong;Hanshin Seol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.243-249
    • /
    • 2023
  • The occurrence of cavitation on the propeller is directly linked to the naval ship's survivability, and it is necessary to design a propeller shape that delays the cavitation inception. However, the propeller cavitation can occur under various operating conditions, thus it is important to identify whether the propeller cavitation exists during operation as well as in the design phase. To this end, it is necessary to use noise or vibration signals on board to monitor the cavitation inception. In this study, a hydrophone and an accelerometer were installed on the ship hull right above the propeller to compare the performance of analyzing cavitation inception between acoustic and vibration signals. Also, a high speed camera was used to visually observe the occurrence of cavitation through an observation window. The measured results showed that the spectral shapes between acoustic and vibration signals were different, but the level increases at each frequency band and the overall level of the frequency band from 1 kHz to 10 kHz showed a similar tendency. The Detection of Envelope Modulation On Noise (DEMON) analysis also showed similar results for both acoustic and vibration signals, confirming that both hydrophones and accelerometers can be utilized in the analysis of cavitation inception.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.