• Title/Summary/Keyword: 진동분포

Search Result 593, Processing Time 0.031 seconds

Spferical fine ZnO Particles prepared from zinc nitrate by Ultrasonic Spray Pyrolysis technique (초음파 분무 열분해법에 의해 질산아연용액으로부터 구형의 ZnO 미분말 제조)

  • 이서영;김영도;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.46-58
    • /
    • 1991
  • The synthesized ZnO powder was prepared by spray pyrolysis method using ultrasonic vibrator. The starting solutons were the aqueous solution of $Zn(NO_3)_2\cdot6H_2O$. The concentration was prepared 1M, O.5M, O.25M, and O.lM. The Nz carrier gas was 2.3cm$\cdot{sec}^{-1}$. The prepared powder from the $Zn(NO_3)_2{\cdot}6H_2O$ aqueous solution was Zine oxide with hexagonal structure. The shape of prepared powder was fine size, narrow size distribution, agglomerate-free, nearly sphere particle. Also, the particle size was about $ 0.28-0.61\mum$.

  • PDF

Success Run Test for Reliability Demonstration of 1100℃ Gas Turbine Blades (1100℃급 가스터빈 동익의 무고장시험을 통한 HCF 신뢰성 평가)

  • Lee, Dooyoung;Goo, Jaeryang;Kim, Doosoo;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.107-111
    • /
    • 2017
  • The reliability on high cycle fatigue damage mechanism for new blades manufactured by reverse-engineering is demonstrated by success-run test. Turbine blades always experience various dynamic loads in turbine operation, as well as being in resonance condition and forced by fluid-induced vibrations mostly during run-up/down, which may accumulate high cycle damage to the blades. The accidents caused by blade failure especially incur not only a lot of troubles to the machinery but also huge financial losses. Therefore it is necessary to verify the reliability of blades in advance for the safe use. The success run test for the reliability demonstration is designed and performed for the new blades using the technique known as resonant high cycle fatigue testing.

Reduction of Audible Switching Noise in Induction Motor Drives Using Random Position PWM (Random Position PWM을 이용한 유도전동기의 가청 스위칭 소음 저감)

  • 나석환;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.287-297
    • /
    • 1998
  • RPWM(Random Pulse Width Modulation) is a switching technique to spread the voltage and current harmonics on wide frequency area. Using randomly changed switching frequency of the inverter, the power spectrum of the electromagnetic acoustic noise can be spread into the wide-band area. And the wide-band noise is much more comfortable and less annoying than the narrow-band one. So RPWM have been attracting an interest as an excellent reduction method of acoustic noise on the inverter drive system. In this paper a new RPPWM(Random Position PWM) is proposed and implemented. Each of three pulses is located randomly in each switching intervals. Along with the randomization of PWM pulses, the space vector modulation is processed on the C167 microcontroller also. The experimental results show that the voltage and current harmonics were spread into wide band area and that the audible switching noise was reduced by proposed RPPWM method.

  • PDF

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF

An Experimental Study on the Stability of Rubble Mound Structures by Wave Directionality (사석방파제의 안정성에 미치는 방향성효과에 관한 실험적 연구)

  • 손병규;류청로
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.139-148
    • /
    • 2001
  • Phenomena induced by waves, such as overtopping, sediment transport, vibration/fluctuation and destruction of structures are highly influenced by the directionality of wave propagation. These phenomena are often dominated by non-linearity, and so hydraulic model experiments are widely adopted for stability analysis rather than numerical modeling, Thus, stability ofrubblc mound breakwaters(RMB) due to wavc directionality was experimentally investigated in this study. The incident wave angle $30^{\circ}$ was found more risky on the damage rate of RMB under directional regular waves, and the incident wave angle $40^{\circ}$ was found relatively risky under directional irregular waves. These results clarified the wave directionality effect on the stability ofRMB, These facts were found correspondent to the occurrence of the peak between $20^{\circ}$-$40^{\circ}$ with the directional frequency distribution of lIlO maximum water particle velocity.

  • PDF

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.

Review of Applicability of the Standard Blasting Patterns of MLTM to Various Rock Types (국토해양부 표준발파패턴의 셰일암반 적용성에 관한 사례 연구)

  • Kim, Se-Hyun
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Blasting is necessary for excavation processes since more than 70% of korean land is consist of mountains. The vibration and noise accompanied by blasting processes usually bring about public complaints. Blasting patterns are chosen by economical efficiency, stability and construction conveniency. However, there are many alternatives without control to settle the popular complaint. To prevent those alternatives, standard blasting method for design and construction were suggested by MLTM (Ministry of Land, Transport and Maritime Affairs) in 2006. However, standard blasting pattern of MLTM was designed in a lump irrespective of types of rocks. Economical loss may occur by ignoring the characteristics of rocks for the applications to the rocks with low intensity, such as shale, or containing many joint. We deduced some economical progresses by performing test blasting with adjusted drilling spacing and length of burden considering the characteristics of local rock. This paper suggests the start of case studies for different applications. Economic improvement can be expected by applying those results deduced from case studies to design and construction.

Numerical Simulation of Directivity for Probe and Surface Defect (탐촉자와 표면 결함에 대한 지향성의 수치 실험에 관한 연구)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.291-298
    • /
    • 1995
  • An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. This paper studied the directivity of shear waves emitted from angle probes and scattered from surface defects by using visualization method. These experimental results were compared with the theory which was based on the continuous wave. The applicability of continuous wave theory was discussed in terms of the parameter $d/{\lambda}$; where d is transducer or defect size and ${\lambda}$ is the wavelength. In the case of angle probes, the experimental results show good agreement with theoretical directivity on the principal lobe. When defect size was smaller than the wavelengths, clear directivity in the reflected wave was observed. In the case of the same ratio of defect size to wavelength, the directivity of reflected waves from the defect show almost the same directivity in spite of frequency differences. When the $d/{\lambda}$ is greater than 1.5, measured directivities almost agreed with the theoretical one.

  • PDF

Maximization of the Output Voltage of a Cantilevered Energy Harvester Comprising Piezoelectric Fiber Composites (압전섬유복합재 외팔보 에너지 회수장치의 출력전압 최대화)

  • Kim, Seon-Myeong;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.805-812
    • /
    • 2011
  • In this study, a cantilevered energy harvester comprising piezoelectric fiber and epoxy composites was designed and analyzed electro-mechanically. In order to maximize the power of the cantilevered energy harvester, its exciting frequency was tuned to the first natural frequency of the beam. An efficient analysis method for predicting the output voltage of the beam was developed by using the finite element method coupled with piezoelectric behavior. By using this method, the effects of geometric parameters and various piezoelectric materials on power generation were investigated and the electric characteristics were evaluated. Design optimization of the beam geometries was performed for a base model. The optimum MFC design generated a maximum electric output of 40.1 V at a first natural frequency of 24.5 Hz.

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.