• Title/Summary/Keyword: 직접 메탄화

Search Result 42, Processing Time 0.025 seconds

Two-stage Biological Hydrogen Production form Organic Wastes and Waste-waters and Its Integrated System (유기성 폐기물 및 폐수로부터 2단계 생물학적 수소생산 및 통합화 시스템)

  • Kim, Mi-Sun;Yoon, Y.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.52-64
    • /
    • 2002
  • 유기성 폐기물을 이용하여 생물학적 수소생산 통합화 시스템 연구를 수행하였다. 통합화 시스템은 유기성폐기물의 전처리, 2단계 혐기발효 및 광합성 배양으로 구성된 생물학적 수소생산 공정, 초임계수 가스화 공정, 생산된 가스의 저장, 분리 및 연료전지를 이용한 전력 생산으로 구성되었다. 실험에 사용된 유기성 폐자원은 식품공장 폐수, 과일폐기물, 하수슬러지이며, 전처리는 폐기물에 따라 열처리 및 물리적 처리를 하였으며, 전처리된 시료는 생물학적 수소생산 공정에 직접 적용되었다. Clostridium butyricum 및 메탄 생성조에서 발생하는 하수슬러지중의 미생물 복합체는 수소생산 혐기 발효공정에 사용되었으며, 광합성 수소생산 미생물인 홍색 비유황 세균은 광합성 배양에 사용되었다. 생물학적 공정에서 발생하는 미생물 슬러지는 초임계수 가스화 공정으로 수소를 발생하였으며, 슬러지 중의 COD를 저하시켰다. 생물학적 공정 및 초임계수 가스화 공정에서 발생하는 수소는 가스탱크에 가입상태로 저장한 후, 95%순도로 분리하였으며, 정제된 수소는 연료전지에 연결하여 전력 생산을 하였다.

A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell (직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구)

  • Wee, Jung Ho;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 1999
  • The trend of poisoning of reforming catalyst along with the position of anodic catalyst bed was studied. Keeping the conditions that steam to carbon ratio was 2.5, operating voltage was 0.75 V, current density was $140mA/cm^2$, the unit cell was operated during 24 hrs at a steady state. And then the cell was stopped, the catalysts packed in the position of inlet, middle and outlet were sampled individually and then the amount of carbon, Li and K poisoned were analysed. After 100 hrs operated, the catalysts at the same positions were analysed at the same manner. The result of this experiment was as followings. After 24 hrs operated, the poisoning amounts of Li and K in the catalyst were 0.27 wt% at inlet, 0.23 wt% at middle and the highest value 1.59 wt% at outlet. After 100 hrs, the amount of poisoning is the highest in the catalyst packed at the inlet of unit cell. The performance simulation of unit cell explained these trends of poisoning catalysts. The simulation told that the catalyst in the region of the inlet of unit cell treated the 90% of initial methane flow rate and the highest electrochemical reaction happened in this region. So the catalysts of this region were the most poisoned with carbon, Li and K and also the rate of poisoning is faster than that of the catalyst at other regions. The temperature at the region of outlet of unit cell was $30^{\circ}C$ higher than that of other regions, so more Li, and K vaporized than at other regions and little reforming reaction at this region made the catalysts poisoning rate low.

  • PDF

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Characterization of Passive Direct Methanol Fuel Cells (수동형 직접 메탄올 연료전지의 특성 연구)

  • Kho, B.K.;Kim, Y.J.;Oh, I.H.;Hong, S.A.;Ha, H.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • In this study investigations have been carried out for the evaluation of small DMFCS under passive operation conditions for use in portable powers. Under passive conditions, a maximum performance was obtained at a methanol concentration of 4 M and at a catalyst loading of $8mg/cm^2$ on both electrodes. By optimizing various parameters, we could achieve the highest performance of $55mW/cm^2$ at 1 attn and at R.T.A monopolar stack consisting of 6 unit cells with active area of $4.5cm^2/cell$ was prepared and it showed a uniform voltage distribution all over the cells and it had a power output of 1 watt and a power density of $37mW/cm^2$ A monopolar stack which consisted of 16 cells and produced a 2.4W power was also fabricated and was tested for operation of a miniature car.

Induction of Apoptosis by Scolopendra subspinipes mutilans in Human Leukemia HL-60 Cells through Bcl-xL Regulation (왕지네(Scolopendra subspinipes mutilans)의 Bcl-xL 조절에 의한 HL-60 세포의 아폽토시스(Apoptosis) 유도)

  • Kim, Kil-Nam;Kim, Sang-Bum;Yoon, Weon-Jong;Yang, Kyoung-Sik;Park, Soo-Yeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1408-1414
    • /
    • 2008
  • The anticancer properties of Scolopendra subspinipes mutilans extract were investigated. The extract from S. subspinipes mutilans by 80% EtOH was fractionated with n-hexane, dichloromethan ($CH_2Cl_2$), ethylacetate (EtOAc), and butanol (BuOH) in order. The EtOAc fraction showed the highest inhibitory activity (about 80%) against human leukemia (HL-60) cell growth at $50\;{\mu}g/mL$. To explore the mechanism of cytotoxicity, we used several measures of apoptosis to determine whether these processes were involved in EtOAc fraction-induced HL-60 cell death. Our results showed EtOAc fraction induced cell shrinkage, cell membrane blebbing, apoptotic body, and DNA fragmentation. The EtOAc fraction gradually decreased the expression of anti-apoptotic Bcl-xL and led to the activation of caspase-3, -9 and cleavage of PARP. These findings suggest that S. subspinipes mutilans exhibits potential anticancer properties.

Combustion Characteristics of the Methane-Oxygen Bipropellant Injected by a Shear-coaxial Injector (전단동축형인젝터를 통해 분사된 메탄-산소 이원추진제의 연소특성)

  • Hong, Joon Yeol;Bae, Seong Hun;Bae, Dae Seok;Kim, Jeong Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.787-790
    • /
    • 2017
  • This study is a preliminary research on characterization of methane - oxygen combustion used in bipropellant thruster. The limit of combustion stability and flame shape of methane - oxygen non-premixed flame injected by shear coaxial injector in the model combustion chamber Experimental studies have been carried out. A direct image of the flame was photographed using a DSLR camera, and combustion characteristics and flame length were quantified through image post-processing. As a result, it was confirmed that the stabilized flame was generated at the stoichiometric ratio as the oxidizer Reynolds number ($Re_o$) was increased, and the length of the turbulent flame was increased under the same injector diameter condition.

  • PDF

Oxidative Coupling of Methane by Metal Oxide Catalysts (금속 산화물 촉매를 이용한 메탄의 Oxidative Coupling 반응)

  • Kim, Hyung-Jin;Pyun, Moo-Sil;Park, Hong-Soo;Hahm, Hyun-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.807-813
    • /
    • 1993
  • Oxidative coupling of methane(OCM), one of the methods of direct methane conversion, was performed. Metal oxide catalysts used were Li/MgO and Pb/MgO. To investigate the reactivity of the catalysts with temperature, the reaction was carried out at 600, 700 and $800^{\circ}C$; and to investigate the effect of the feed ratio of the reactants($CH_4:O_2$) on reactivity, conversion, and selectivity the reaction was performed at $700^{\circ}C$ with the feed ratio of 2:1 and 1:1. The results indicate that 7wt% Li/MgO catalyst is a good catalyst for OCM reaction with 20% conversion and 65% selectivity at $700^{\circ}C$ with the feed ratio of 2:1. As feed ratio was 1:1, methane conversion was increased to 30% while $C_2$ selectivity decreased to 45% at $700^{\circ}C$ with 7wt% Li/MgO catalyst. The Pb/MgO catalyst showed less selectivity(25%) than Li/MgO did.

  • PDF

A Study on Sol-gel Preparation of Pt-Ru/C Anode Catalysts for Direct Methanol Fuel Cells (솔-젤 합성에 의한 직접 메탄올 연료전지용 고분산 Pt-Ru/C 음극 촉매의 제조)

  • Lee, Kang-Hee;Kim, Il-Gon;Park, Tae-Jin;Suh, Dong-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • Cryogel and aerogel Pt-Ru/C were synthesized by the sol-gel process for the electrooxidation of methanol. From XRD analysis, it was found that the catalysts had highly dispersed Pt-Ru alloys on carbon support although high temperature treatments have been conducted. Electrocatalytic activities of 3 type aerogel catalysts were investigated in half cell experiments by cyclic voltammetry. Among them, Phloroglucinol-Formaldehyde(PF) type catalyst shows the highest activity. From the results of deactivation test for each catalysts, the aerogel catalysts are found to have excellent durability compared with those prepared by colloidal method.

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

$CO_2$ Reforming과 $CO_2$의 화학적 전환

  • Jeon, Gi-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.71.2-71.2
    • /
    • 2013
  • 천연가스를 화학적 전환에 의해 부가가치를 높이기 위해서는 리포밍에 의해 합성가스(CO/H2)를 경유하는 간접전환경로가 현재로서는 가장 현실적인 방법이라 할 수 있다. 천연가스를 이용한 합성가스 제조기술은 수증기개질법(SRM), 이산화탄소 개질법(CDR, dry reforming), 부분산화법, 촉매 부분 산화법, 자열개질법 등으로 구분되며, 최근에는 각각의 제조방법의 장점을 고려하여 혼합개질법 또는 일련의 리포머 조합 방법이 개발되고 있다. CDR은 촉매 하에서 메탄과 이산화탄소의 직접접촉에 의해 반응이 일어나며, 수소와 일산화탄소의 비가 같은 합성가스가 제조된다. SRM에 비하여 고온에서 반응이 일어나고 전환율이 더 낮으므로 에너지 소비가 상대적으로 높다. 하지만, SRM과 함께 사용하면 합성가스 비율을 F-T합성이나 메탄올 합성에 적절한 비율로 조절이 가능한 장점이 있으며, 온실가스를 저감시킬 수 있는 전환기술로도 각광받고 있다. 본 발표에서는 최근의 CDR을 이용한 가스로부터 합성석유(GTL)와 메탄올을 고효율로 생산하는 기술 개발 동향에 대해서 소개하고자 한다.

  • PDF