• Title/Summary/Keyword: 직접전단

Search Result 486, Processing Time 0.027 seconds

A Numerical Study of the Shear Behavior of a Rock Joint Considering Quantitative Roughness Parameters (정량적인 거칠기 파라미터를 고려한 절리면 전단거동의 수치해석)

  • 김대복;손봉기;이정인
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.279-288
    • /
    • 2001
  • 암반내에 존재하는 불연속면은 지하구조물의 안정성에 큰 영향을 미친다. 불연속면을 해석하기 위한 구성법칙에 대한 많은 연구가 진행되어 왔으나, 객관적인 거칠기 파라미터를 이용한 전단거동 모사에 관한 연구는 아직 미흡한 실정이다. 본 연구에서는 정량적인 거칠기 파라미터를 이용한 두 가지의 새로운 구성방정식을 만들어 절리 거동을 모사하였다. 첫 번째 구성법칙은 탄소성 이론에 근거하여 두께가 없는 개별절리요소 이용한 방법이고, 두 번째 구성법칙은 3차원 레이저 변위 측정 데이터를 직접 이용하여 Ohnishi가 제안한 거칠기 손상모델을 도입하였다. 제안된 두 모델을 가지고 직접 전단시험을 모사해본 결과 실제 실험에 나타나는 변형률 경화 및 연화현상 그리고 잔류전단강도와 같은 현상을 볼 수 있었다.

  • PDF

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.

A Study on the Interface Shear Strength of HDPE Textured Geomembrane (HDPE 표면처리 지오멤브레인의 경계면 전단강도에 관한 연구)

  • Kim, Sejin;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • This paper evaluates the interface shear strength of HDPE textured geomembrane. The interface shear strength between textured geomembrane and marl, and textured geomembrane and woven geotextile were measured; and the smooth geomembrane was used to evaluate the effect of "texture" on the interface shear strength. The interface shear strength was measured using a large direct shear testing device under several conditions including the presence of water, and the normal stresses that were 12, 24, 45, 100, 500, and 1,000 kPa. From testing results, it was found that there was meaningful reduction in the interface shear strength in the presence of water, but the effect of normal stress was not clear. The interface shear strength was measured to be significantly different for smooth geomembrane, whose strength was measured to be as small as half that of the textured geomembrane.

A study for Shear Strength Characteristics of Frozen Soils under Various Temperature Conditions and Vertical Confining Pressures (동결온도조건 및 수직구속응력에 따른 동결토의 전단강도 변화에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.51-60
    • /
    • 2012
  • In order to characterize the shear strength of the frozen sand for foundation design in cold region and prediction of adfreeze bond strength, many researchers developed test techniques and carried out many tests to analyze shear strength properties of the frozen sand for half a century. However, many studies for shear strength properties of the frozen sand have been carried out with limited circumstances, even though shear strength of the froze sand can be affected by various influence factors such as soil type, temperature conditions, and magnitude of normal stress. In this study, direct shear test equipment was used to analyze the shear strength characteristics of the frozen sand. Direct shear test equipment was designed for cold weather, and the direct shear tests were carried out inside of large-scaled low temperature chamber. Three soil types-two uniform sands and one well graded soil were used to analyze the shear strength of the frozen sand with three different temperature conditions and three different vertical confining pressures. In this research, a series of direct shear tests for shear strength of the frozen sand have been conducted to demonstrate the efficiency of effectiveness of the test equipment and low temperature chamber. This research also showed that shear strength of the froze sand increased with decreasing temperature condition, but the influence of vertical confining pressure was insignificant to the shear strength of the frozen sand.

Static, Buckling and Free Vibration Analyses of Fibrous Composite Plate using Improved 8-Node Strain-Assumed Finite Formulation by Direct Modification (직접수정된 8절점 가정변형률 유한요소를 이용한 복합적층판의 정적, 좌굴 및 자유진동 해석)

  • Park, Won-Tae;Chun, Kyoung-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, a simple improved 8-node finite element for the finite element analysis of fibrous composite plates is presented by using the direct modification. We drive explicit expressions of shape functions for the 8-node element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian coordinates. The refined first-order shear deformation theory is proposed, which results in parabolic through-thickness distribution of the transverse shear strains and stresses from the formulation based on the third-order shear deformation theory. It eliminates the need for shear correction factors in the first-order theory. This finite element is further improved by combined use of assumed strain, modified shape function, and refined first-order theory. To show the effectiveness of our simple modification on the 8-node finite elements, numerical studies are carried out the static, buckling and free vibration analysis of fibrous composite plates.

Relationship between Rainfall Intensity and Shear Strength of Slope (사면의 전단강도와 강우강도와의 상관관계)

  • Lee, Jungsik;Han, Heuisoo;Jang, Jinuk;Yang, Namyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2010
  • The unsaturated slope usually is stable for a long time, but fails during heavy rainfall. And the factors of the rainfall intensity exhibit significant roles because the water content and the shear stress developed along the potential failure surface will be changed by the rainfall intensity. The objective of the study presented in this paper is to analyze the relationship between rainfall intensity and shear stress of the soil slopes by applying the laboratory slope model apparatus and undrained direct shear test with rainfall intensity controlled. The soil sample was taken from the field slope of Youngdong, and particle size analysis was done. To look over the relationship between rainfall intensity and shear strength of slope, the three-dimensional relationships among shear strength, normal stress and water content of the slope soil samples are examined; those are based on the data from the TDR sensor and undrained direct shear test.

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint (절리면 전단거동의 크기효과에 관한 실험적 연구)

  • Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.31-41
    • /
    • 2006
  • The scale effect of specimens on the shear behavior of joints is studied by performing direct shear tests on six different sizes in Granite. The peak and residual shear stress, shear displacement, shear stiffness, and dilation angle are measured with the different normal stress(0.29~2.65MPa) and roughness parameters. It is also shown that both the joint roughness coefficient(JRC) and the joint compression strength(JCS) reduce with increasing joint length. A series of shear tests show about 56~67% reduction in peak shear stress, and about 18~44% in residual shear stress, respectively as the contact area of joint increases from 12.25 to $361cm^2$. Also the variation of dilation angle is $27^{\circ}$ at normal stress of 0.29 MPa and $6^{\circ}$ at normal stress of 2.65 MPa, respectively. The envelopes considering scale effect for JRC are made for the peak shear strength of rock joint in comparison with the Barton's equation.

  • PDF

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.