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Finite Element Simulation of High-Speed Impact
in Plane Structure
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Abstract

In this investigation the use of the finite element method in the analysis of impact-induced elastic stress
waves in cracked plane is examined. The plane is assumed to be isotropic and elastic. The equation of mo-
tion is developed using Newton’s second law of motion and the finite element formulation for the elastic
stress wave propagation is developed using the Galerkin's method. Stress wave propagation include material
-dependent wave speed and time-dependent stress fields. Numerical solution of elastic stress wave equation
is iteratively obtained using a direct implicit scheme. The time-dependent part of the load is a step pulse.
The solution obtained using the finite element method is compared with the solution obtained by using an
analytic method. Numerical results show that there is a good agreement between the solution obtained by
using an analytic method and the finite element solution in the analysis of the stress wave motion. Finally,
the elastic stress wave intensity at the cracked area is discussed.

Keywords : siress wave, hyper-velouity impact

1. Introduction est In stress wave propagation in elastic media

because of current developments in materials
In recent years there has been renewed inter- and structures. In the early 1970s, an analytic
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method of stress wave propagation had been de-
veloped for the one dimensional elasto-dynamic
problem. The quantity of kinetic energy should
be concerned about impact body in the case of
an impact load.

Recently, a large number of investigators have
studied the stress wave propagation problems
dealing with boundary integral method"-?, direct
time integration method of Kirchhoff equation® ¥
and Dirichlet-to-Neumann (DtN)  method®~*?.
The boundary integral method is required many
boundary solutions to obtain an exact solutions
at the boundary integral transform region, and
in this method, the reliability of analysis is exist-
ed at a low velocity of stress wave. The direct
time integration method of Kirchhoff equation
requires a lot of memory device and the stress
wave analysis is impossible when the analysis di-
mension is raised. DIN method is required an
exact boundary conditions and the results of
analysis have not obtained specific values in the
space-time domain. Therefore, the general solu-
tions of DtN method are obtained by the time
convolutions.

For a dynamic problem, the Fourier transfor-
mation formulate the displacement field in the
transformed domain by using the modal analysis
and the inverse transformation can be evaluated
by using the FFT''® and the displacement field
in the space-time domain can be obtained. This
method is accompanied by inverse transforma-
tion to obtain the space-time domain solutions.

The finite element method has been used for
structural dynamic analysis. The convergence
and accuracy of finite element analysis is depen-
dent upon the discretization of space-time do-
main. The difficulty lies not in the formulation,
but in the cumbersome calculation necessary to
get convergence and accuracy.

This investigation propose a numerical method
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which combines the finite element method with
the method of direct integration and stress wave
propagation is studied through application of the
numerical method. A finite element program for
elastic stress wave propagation is developed in
order to investigate the shape of stress field at
time increment. The numerical solution of the
propagation of hyper-velocity impact induced
stress waves in indefective plane is obtained and
compared with the solution obtained by the use
of analytic method. The reliability and accuracy
of the numerical analysis are compared with the
analytic solution.

The results for stress fields of three cracked
plane examples excited by an impact load in the
space-time domain are studied. The shape of
stress wave propagation and, in addition, the
stress wave intensity are discussed on the
cracked planes. It is the goal of this paper to
provide a reliable method to predict these phe-
nomena with a representative model.

2. Governing Equations

Stress wave equation in the isotropic elastic
medium can be obtained by using force balance
between the elastic and inertial forces acting on
a small portion of the cube. In the tensor nota-
tion,

s 2. .
5o = oot w

where T is the stress tensor and u is the dis-
placement with Cartesian components and ¢ and
t are, respectively, the density of the medium
and the time. For a two-dimensional problem,
the time-dependent transient stress wave equa-
tions in the isotropic x-y plane are obtained by
the following differential equation using the
nabla operator :



p‘g?ﬁ = (A+2) V(Y - u)
+A+ W VXX U+Sf 2)

where  is the displacement vector, f is the ex-
ternal force vector applied on the point and A
and y are, respectively, the Lamé constant and
the rigidity modulus of the medium. The longitu-
dinal stress wave velocity V: and the shear stress
wave velocity V, are given by

o= AT Vs:/z 3)
0 o

The stress wave intensity or stress wave ener-
gy flux is obtained using the law of energy con-
servation (J.A. Stratton, 1941) by the following
equations :

ow K=
7+AK 0 (4)

where %—1;} represents the time rate change of

energy per unit volume and K is the stress wave
intensity. Using a Green’s theorem, The time
rate change of energy per unit volume is equal
to zero. Thus

S,
S.'+AI

Kivar = Ky (5)

where a subscript t stands for the time, At is
the discrete time increment and S is used to de-
note a stress wave propagated area.

The stress wave intensity is in inverse propor-
tion to the ratio of propagated area with each
other by changing propagated area at time in-
crement. Physically, the above equation implies
that the amplitude of stress wave front decreas-
es with the radius from the impact load point.
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3. Finite Element Approximation for Str-
ess Wave Equations

For the two dimensional problem in the x-y
plane, the functional I, of the equation (2) is
defined using variational methods :

1o=[ [(Fe+ 2wy +(vuy]

o u
ot*

+%(/H‘ﬂ)(v><u)2“%p +fu)dx dy (6)

where f is the applied external force vector, and
the other symbols are as defined previously.

The finite element approximation to the gov-
erning equations given in the previous section is
based on the 4-node quadrilateral isoparametric
element. The finite element discretization given
in equation (6) for the stress wave analysis is
based.on modelling in the variable, i.e., time and
displacement, u. and «, can be approximated by
the expressions :

uz:i_ilNi(‘r: y) Ui (2) (7a)

Uy = ; Nz, y) u (t) (7b)

where N is an interpolation function of x and »,
u, and u, are nodal values of u, and u,, respecti-
vely. This shape function, N, satisfies the requi-
rements of C° linear continuity condition.
Substituting the appropriate shape function
for the elements into equation (6), and leads to

[Kullu} + [K)u} + {F@)} =0 (8
In this equation [K,] and [K] are, respective-

ly, the inertia matrix and the stiffness matrix, F
(z) is the load vector, v is the unknown nodal
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displacement vector. Equation (8) is commonly
found in the solution of dynamic problems and
shows that the equation of stress wave propaga-
tion can be solved using the same approach as
other dynamic problems.

In this investigation the transient response is
discretized using a single-step scheme. A range
of direct integration methods are at our dispo-
sal to solve this time differential problem nu-
merically. For simplicity, let us choose implicit
method!¥'® :

wlta+ a8) = ulty) +-SHie)

+ult.+ at)} (9a)

wlta+ o) = u'(tn)+32i{ii(t,.)

+1(t.+ o)} (9b)

where At=t,. — t, and u(t,) =u, and the su-
perposed "." signifies time differentiation.
Using equation (9), equation (8) becomes

[K.]{u}m}l = {F‘}n+l (10)

where {F‘}n+l:{F(t + At)}+[KH]

I R
( At
4

and [K‘] = [K] + A—L‘Z [Ku]-

The nodal displacements calculated from
equation (10) are used to directly evaluate the
node point stresses at time t + At

4. Finite Element Models and Material

The geometric profile of finite element analy-
sis (FEA) model is shown in Fig. 1. Coordinate
axes x and y are defined along the horizontal
side and the vertical distance from the origin at
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Fig. 1 The geometric profile and finite element
model

the lower left corner of the plane. The plane is a
regular square whose dimension is 200mm and the
length of the defect of the plane is 60mm (a/W=
0.3). Specifically the present paper deals with
the following cases : (i) indefective plane;
(ii) an angle of inclination of crack is 0°; (iil)
an angle of inclination of crackis 30° ; and (iv)
an angle of inclination of crack is 456°. Parame-
ters used to finite element models are listed in
Table 1.

For each phase we define an initial displace-

Table 1 Material properties of FEA model

Parameter Description Value
E Young’s Modulus 62 GPa
G Shear Modulus 25 GPa
o Density 2300 kg/m?*
v Poisson’s Ratio 0.24
Vs Stress Wave Speed at Bar | 5191 m/sec
Vy Stress Wave Speed at Bulk| 5600 m/sec

ment, velocity and acceleration. The subscript 0
is taken to represent an initial condition :



Ug=0,u,=0, £ =0 (11

The time integration of direct implicit scheme
is limited by the size of the critical time step,
which is Z2usec for these problems;in other
words, for a stress wave traveling in FEA model,
elements of 10mm per side give a good approxi-
mation. The general configurations of the finite
element models used in the analysis are shown
in Fig. 1(0°crack angle).

Elements with dimensions of 2mm per side in
the vicinity of crack are used. Outside of this re-
gion, elements with dimensions of bmm per side
are used to reduce calculation time and storage
demand.

A total of 3600 elements and 3721 nodes is
used in the finite element discretization for the
indefective case, 2288 elements and 2400 nodes
is used for the 0°inclined defective case, 1627
elements and 1766 nodes is used in the finite el-
ement discretization for the 30°inclined defective
case and a total of 1565 elements and 1656 nodes
is used for the 45°inclined defective case, respe-
ctively.

To study stress waves in the context of this
model, we make the following assumptions: (1)
the plane is subjected to a point unit step load,
at the center of opposite site of fixed end;and
(ii) stress wave may be reflected perfectly at
the fixed boundary and may be transmitted per-
fectly at the infinite boundary. These boundary
conditions are typical of what might be encoun-

tered in certain machineries.

5. Results and Discussions

The finite element models proposed in the
previous section are applied to the stress wave
propagation of plane structure. The analytic re-
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sults and numerical results are presented in Fig.
2~TFig. 6. All computations were carried on
CRAYC-90 computer in double precision. Con-
vergence and accuracy of the finite element so-
lutions are obtained with indefective plane. This
is demonstrated in Fig. 2~Fig. 3 by comparing
the aspects of stress wave porpagation of ana-
Iytic result with finite element results and a very
good agreement between the analytical and the
finite element solution was obtained.

Fig. 2 shows typical patterns of stress wave
propagation of an indefective plane. In the case
of FEA model, the calculated stress wave speeds
are 5191m/sec and 2705m/sec for longitudinal
and shear stress wave component respectively.
In Fig. 2(a) ~ (¢) two different zones can be
seen;the main lobe, and a small lobe at the right
and left. Small lobes are shear stress wave toge-
ther with the shear stress component of the lon-
gitudinal stress wave. This can be verified in Fig.
2(b) where some time passes and the two stress
waves are separated due to their different veloc-
ities. The shear stress wave is propagated with a
half speed as compared with the longitudinal
stress wave. The direction of shear stress wave
is get an odd angle of 45°from point load direc-
tion and the stress wave intensity of shear stress
component is higher than that of longitudinal
stress wave at any arbitrary time.

In Fig. 3 the analytical stress wave intensity
and the numerical stress wave intensity are pre-
sented against the distance of propagated stress
wave front. In these analyses, the stress wave
intensity is assumed to decrease in terms of the
ratio of propagated area. The difference of
stress wave intensity between the analytical and
the finite element solution was obtained to 4.37
percent.

Since the main interest is to study the aspect
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(c) time = 40 sec
Fig. 2 The equivalent stress distribution of the plane without defect
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Fig. 3 Comparison of the time responses of stress
wave intensity of the isotropic plane
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of stress wave propagation on the fissure, the
plane strain element is used. Fig. 4 shows the
time responses of the equivalent stress compo-
nents in the 0°angle of inclination of defective
plane. Before arriving at the crack face, the
stress wave is propagated with the same aspect
as indefective plane. With respect to Fig. 4 the
stress wave is bisected at the center of the crack
face and the concentrated parts of stresses are
moved toward the crack tip along the crack
face.
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Fig. 4 Iso-stress distribution of the plane with an
angle of inclination of crack is 0°

Fig. 5 shows the time responses of the equiva-
lent stress components in the 30°angle of incli-
nation of defective plane. With respect to Fig. 5
the stress wave is bisected at a quarter point of
the crack face and the concentrated parts of
stresses are moved toward the crack tip along
the crack face.

Fig. 6 shows the time responses of the equiva-
lent stress components in the 45°angle of incli-
nation of defective plane. With respect to Fig. 6
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Fig. 5 Iso-stress distribution of the plane with an
angle of inclination of crack is 30°

the stress wave is bisected at one sixth point of
the crack face and the concentrated parts of
stresses are moved toward the crack tip along
the crack face.

The stress wave is propagated with the same
aspect as indefective plane before arriving at
the crack face. Because of the crack angle of in-
clination, the arrival time of stress wave at the
two crack tip sides are become different and the
stress concentration is produced at the crack tip
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Fig. 6 Iso-stress distribution of the plane with an
angle of inclination of crack is 45°

near the load point. The previously produced
stress concentration part is moved to the coun-
terpart of the crack along the crack face. The
larger an angle of inclination of crack, the
smaller a part of the stress wave reflected at the
crack face. The crack tip stress distribution is
changed very rapidly. The stress value at the
crack tip is higher than that at the circumfer-
ence of crack during stress wave propagation.
Next we take a vicinity of crack area excited
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by an impact load and obtain the response of
stress field in the space-time domain. The stress
at the crack can be converted to dynamic stress
intensity factor by the displacement extrapola-
tion of the crack tip elements. Fig. 7 shows the
variations of stress intensity factor with respect
to time for a 0°angle of inclination of crack and
45° angle of inclination of crack.

From the numerical results, the opening mode
(mode I) and the in-plane shear mode (mode II)
are appeared simultaneously when the stress
wave pass by the crack tip. The stress wave field
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Fig. 7 Dynamic stress intensity factor vs. time



is separated into two parts at the defect and the
stress wave intensity parts are moved toward the
crack tip with a similar aspect at any defective
case. Therefore, the difference of stress intensi-
ty factor is varied slightly in accordance with
the three defective case. _

The present author is thought the movement
tendency of stress wave intensity parts to be the
similar.

6. Conclusions

The formulation of the numerical method is
presented to analyze the response of plane
structure excited by impact loads. This method
combines the finite element method with the di-
rect integration method. This method is straight-
forward and easy to use. Moreover, this method
can be used for the analysis of arbitrary planes
with many types of cracks subjected to the point
load or line load.

Finally, the stress wave intensity at the defec-
tive area is converted to dynamic stress intensity
factor. Hence the present method can be easily
used for two dimensional impact problem of de-
fective plane structures and pre-estimate the
stress distribution for any structural defects.
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