• 제목/요약/키워드: 직접분사식

검색결과 239건 처리시간 0.03초

운전조건에 따른 공기보조 분사기의 Sauter 평균입경에 대한 고찰 (Investigation on the Sauter Mean Diameter of an Air-Assisted Fuel Injector -Operating Parameter Consideration)

  • 장창수;최상민
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.42-50
    • /
    • 2000
  • Drop size distribution of an air-assisted fuel injector(AAFI) was investigated. Influence of parameters such as ambient air density supply pressure and air-liquid mass ratio(ALR) was examined through both measurement and analysis. The Sauter mean diameter$D_{32}$ varied from 9 to 25$\mu$m throughout all experimental conditions. An empirical correlation for droplet size was obtained. Analytical correlations for predicting $D_{32}$ with respect to operating conditions were also derived through energy consideration and introduction of a simplified model of the from the empirical fitting was adapted to the original equation the proposed correlation in this study matched more closely with measured results. The current correlation exhibited a favorable study matched more closely with measured results. The current correlation exhibited a favorable prediction for $D_{32}$ compared to that by the empirical correlation at selected experimental conditions so that it may be used to predict atomization performance of the AAFI at operating conditions which was not covered in the measurements. After validation the analytical equation was applied to survey the feasible operating conditions for gasoline direct injection application.

  • PDF

물 분사 시스템에 의한 소형 디젤엔진의 NOx 및 그 외 배출물의 특성에 관한 연구 (A Study on the Characteristics of NOx and another Emisson by Water Injection System for a Light-Duty Diesel Engine)

  • 최재성;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.628-636
    • /
    • 2005
  • In this paper. the effects of a WI(Water Injection) in the intake pipe for a 4-cylinder Dl(Direct Injection) diesel engine are investigated experimentally, The WI system was controlled by the duty cycle from the intake manifold's temperature and MAF(Manifold Air Flow) First. effect of EGR on NOx reduction was investigated. Then WI system was applied to reduce NOx As the results. we can make the NOx map and visualize the NOx results by variation of engine speed and engine load It was known that effect of WI system on NOx reduction without the EGR was better than the with EGR base engine except of low load and speed condition.

GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine)

  • 노현구
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석 (Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model)

  • 최민기
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구 (Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel)

  • 이석환;오승묵;최영;강건용
    • 한국가스학회지
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2010
  • 본 연구에서는 LPG/바이오디젤 혼합연료의 직접분사식 디젤엔진 적용성에 관한 실험을 수행하였다. 특히, 혼합연료를 엔진에 적용하는 경우 엔진성능, 배출가스 (미연탄화수소, 일산화탄소, 질소산화물, 이산화탄소), 연소안정성에 대한 실험을 1,500 rpm의 엔진회전수 조건에서 수행하였다. 바이오디젤은 질량대비 20-60% 범위로 LPG에 혼합하였다. 바이오디젤을 40% 이상 혼합하는 경우 엔진은 모든 부하영역에서 매우 안정적으로 연소되었다. 바이오디젤의 혼합율이 증가할수록 혼합연료의 세탄가가 향상되어 연소시작 시점이 진각되었다. 혼합연료를 사용하면 저부하에서는 과혼합에 의한 부분연소로 인하여 THC와 CO의 배출량이 급증하였으며, NOx의 경우 저부하에서는 배출량이 디젤연료에 비해서 낮았으며 고부하에서는 더 많이 배출되었다.

직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구 (An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature)

  • 이성욱;박기영;김종민;박봉규
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구 (An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI)

  • 박기영;강석호;김인구;임철수;김재만;조용석;이성욱
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화 (The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine)

  • 문석수;;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.

직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교 (Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine)

  • 조시현;박철웅;오승묵;윤준규
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.

분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향 (Effects of Ambient Conditions on the Atomization of Direct Injection Injector)

  • 이중순
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF