• Title/Summary/Keyword: 직접단순전단

Search Result 33, Processing Time 0.022 seconds

Strength Character of the Condition of Consolidated Constant pressure with Improvement One-Dimension Shearing Test and Simple Shearing Test (정압(CD)조건의 개량형 일면전단시험과 단순전단시험에 있어서 강도특성에 관한 연구)

  • Kim, Jae-Young;Ohshima, Akihiko;Takada, Naotoshi;Kim, Dong-Hyun;So, Choong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.131-136
    • /
    • 2006
  • 일면전단시험은 전단면의 응력을 직접 측정하므로 평면변형시 강도를 파악할 수 있는 등의 많은 장점을 가지고 있으며, 시험조작이 간편하기 때문에 실용적으로도 우수한 것으로 판단된다. 그러나 사질토의 경우에 의한, Dilatancy에 의한 체적변화과정에서 공시체와 전단상자의 주면마찰력이 전단면의 수직 응력을 증감시키기 때문에 구해지는 강도가 과대 또는 과소하게 나타나는 것으로 알려져 있다. 그러나 반력판측에 장착한 하중계를 통해 전단면의 수직응력을 직접 측정 제어하는 형식으로 개선되어 주면마찰력의 영향을 해소하였다. 따라서 본 연구는 반력판측에 하중계를 장착한 개량형 다단식 단순전단시험기를 개발하여 사질토의 정압(CD)조건 전단시험을 수행하여 강도특성과 전단강도에 미치는 영향을 개량형 일면전단시험의 결과와 비교하였다. 그 결과 정압조건의 일면전단시험과 단순전단시험에 의한 강도정수는 조밀한 모래의 경우는 거의 비슷하게 나타나며, 느슨한 모래의 경우는 일면전단이 다소 크게 나타났다. 그리고 단순전단과 일면전단시험에서의 Dilatancy거동에는 큰 차이가 나타나지 않았다.

  • PDF

A Study on Improvement of Shear Test Apparatus in the Direct Shear Test Under Constant Pressure (정압(CD)조건 직접전단시험에 있어서 시험기의 개선에 관한 연구)

  • Kim Jae Young;Yang Tae Seon;Akihiko Ohshima
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • A direct shear test is classified roughly by one side simple shear test of confining horizontal displacement type and torsional shear test of non-confining one. Direct shear test that has been widely used so far has some problems with test apparatus, testing and the analysis, and in particular that its strength value is everestimated in sandy soils. Also, progressive failure of shearing process happens from shear apparatus restriction and because the shear strain and shear stress are erratic in specimen, we can not define the shear strain value. In the meantime, a simple shear test having advantage of direct shear test is an ideal test method that can get stress-strain relation on shear because it can deliver constant shearing deformation to specimen. However, simple shear test cannot be used practically, because its structure makes tester manufacturing difficult. This paper described a on outline of test apparatus, improvement of test method, and constant pressure test results based on the obtained from improved direct shear apparatus and the standardization of JGS soil testing method.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Liquefaction Strength of Shelly Sand in Cyclic Simple Shear Test (반복단순전단 시험에 의한 패각질 모래의 액상화 강도)

  • Yoon, Yeowon;Yoon, Gillim;Choi, Jaekwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.69-76
    • /
    • 2007
  • The sands which use for soil improvement of soft ground at coastal area contain more or less amount of shells. In this research the effects of shell contents on the liquefaction resistance of the shelly sand were studied. NGI cyclic simple shear tests were performed for the shell-sands with shell contents of 0%, 5%, 10%, 20%, 30% under the effective vertical stress of 50kPa, 100kPa and 150kPa for 40% and 55% of relative density, respectively. Cyclic simple shear test results showed that for the low effective vertical stress, the liquefaction resistance increased rapidly with increase of shell contents in both 40% and 55% relative density. On the other hand, for the high effective vertical stress, the liquefaction resistance increased slightly in 40% relative density and was almost same in 55% relative density. Liquefaction resistance decreased with increasing effective vertical stress for both 40% and 55% relative density. In the same effective vertical stress and shell contents, liquefaction resistance increased with the increase of relative density.

  • PDF

Relationship between Shear Strength and Component Content of Fault Cores (단층핵 구성물질의 함량과 전단강도 사이의 상관성 분석)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.65-79
    • /
    • 2019
  • In this study, simple regression and multiple regression analyses were performed to analyze the relationship between breccia and clay content and shear strength in fault cores. The results of the simple regression analysis performed for each rock (andesitic rock, granite, and sedimentary rock) and three levels of normal stress (${\sigma}_n=54$, 108, 162 kPa), reveal that the shear strength is proportional to breccia content and inversely proportional to clay content. Furthermore, as normal stress increases, the shear strength is influenced by the change in component content, correlating more strongly with clay content than with breccia content. In the multiple regression analysis, which considers both breccia and clay content, the shear strength is found to be more sensitive to the change in breccia content than to that of clay. As a result, the most suitable regression model for each rock is proposed by comparing the coefficients of determination ($R^2$) estimated from the simple regression analysis with those from the multiple regression analysis. The proposed models show high coefficients of determination of $R^2=0.624-0.830$.

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

Shear Capacity Evaluation of Steel Plate Anchors Using Folded Steel Plate in AU-composite Beam (절곡 강판을 이용한 AU합성보 덮개형 강재앵커의 전단성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • Based on U-shaped composite beam, the new form of AU-composite beam were developed to create economical and efficient components reducing the cost and shortening the length of construction work. Because the U-shaped sections are open and needs to be fixed by topping concrete securely. Therefore, it is required to maintain the U-shaped sections in a structure and to work in the safe condition through construction. It also requires accessories that resist the horizontal shear force for synthesis between the top and bottom of the U-shaped section. To reinforce these shortcomings, a shear connector has been developed with various purposes of steel plate anchors. In this study, the steel plate anchors were directly tested and the shear force was evaluated by the horizontal shear force. The experiment was divided into two types, depending on the applicable deck plates. As a result of the experiment, the continuous type specimens showed greater resistance in both strength and displacement than the ones of stud anchor specimen. In discontinuous type case, due to shear simulations and simple element analysis, the less increase the ratio of width to height and the more shear strength decreased. Thus, the shear strength equation of the stud anchor was modified to suggest the new shear strength based on the testing results.