• Title/Summary/Keyword: 직사각형 슬릿

Search Result 6, Processing Time 0.024 seconds

Shielding Effectiveness of Metallic Enclosure with a Rectangular Slit Aperture (직사각형 슬릿 개구를 갖는 금속 함체의 차폐 효과에 대한 연구)

  • Lee, Soong-Keun;Seong, Cheol-Min;Kim, Eun-Ha;Ryu, Seung-Real;Lee, Jae-Hyun;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.652-659
    • /
    • 2012
  • Shielding effectiveness(SE) of metallic rectangular enclosure with rectangular slit apertures at horizontal polarization (HP) and vertical polarization(VP) is investigated. The magnetic polarizability of the rectangular slit apertures and the resonance modes of the metallic rectangular enclosure are analyzed theoretically. The simulation results based on these theoretical analyses are compared with the measured ones. The dependence of the shielding effectiveness on the location of the calculation probe inside the enclosure is also investigated.

Broadband U-Shaped RFID Tag Antenna with Near-Isotropic Characteristic (광대역에서 일정한 준 등방성 특성을 가지는 U-형태의 RFID 태그 안테나)

  • Lee, Sang-Woon;Jung, Hak-Joo;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.480-492
    • /
    • 2009
  • In this paper, we proposed a broadband U-shaped RFID tag antenna with near-isotropic characteristic at UHF band. The proposed tag antenna is composed of the U-shaped half wavelength dipole and a rectangular shaped feed. The rectangular shaped feed that is located inside U-shaped dipole is connected for conjugate impedance matching with the commercial tag chip. A better constant gain deviation characteristic in the operating frequency band is achieved by inserting a rectangular slit in the lower center of the U-shaped antenna body. On the condition of VSWR<2, the tag antenna had the measured bandwidth of 10.36%, from 860.5 to 954.5 MHz, and 9.84%, from 864.5 to 954 MHz, for antenna without slit and with slit, respectively. On the condition of VSWR<5.8, the tag antennas had the measured bandwidth of 15.78%, from 835.5 to 979.5 MHz, and 15.89%, from 837 to 981.5 MHz, for antenna without slit and with slit, respectively. The difference between the maximum and minimum gain deviations of tag antenna without slit in the operating frequency band is 0.53 dB since the maximum and minimum gain deviations are 3.86 dB and 3.33 dB, respectively. Whereas the difference between the maximum and minimum gain deviations of tag antenna with slit in the operating frequency is 0.06 dB since the maximum and minimum gain deviations are 3.60 dB and 3.54 dB, respectively.

Broadband planar dipole with a t-shaped slit for digital TV Reception (t형 슬릿을 갖는 디지털 TV 수신용 광대역 평면 다이폴)

  • Lee, Jong-Ig;Yeo, Junho;Yang, Myung-Ku;Lee, Yoon-Ju;Kwon, Jun-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.159-160
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for the terrestrial digital television (DTV) reception is studied. The proposed antenna is an asymmetrical planar dipole consists of a rectangular patch with an embedded t-shaped slit, and the antenna shape is printed on a side of an FR4 substrate. The effects of geometrical parameters on the antenna performance are examined, and the parameters are adjusted to operate in the DTV frequency band of 470-806 MHz. The prototype antenna is fabricated on an FR4 substrate with a size of $260mm{\times}30mm$. The performance of the antenna is tested experimentally to verify the results of this study.

  • PDF

U-Shaped RFID Tag Antenna with Isotropic Radiation Characteristic (등방성 복사 특성을 가지는 U-형태의 RFID 태그 안테나)

  • Lee, Sang-Woon;Cho, Chi-Hyun;Lee, Kee-Keun;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.523-532
    • /
    • 2008
  • In this paper, we proposed a U-shaped RFID tag antenna with isotropic radiation characteristic for the stable operation of RFID system. The proposed antenna is composed of a U-shaped half wavelength dipole and a rectangular-shaped feed. In order to have good impedance matching with a tag chip, the commercial tag chip is attached to the lower center of the feed. A gain deviation characteristic of the U-shaped tag antenna can be further improved by inserting a rectangular slit in the lower center of the U-shaped antenna body. On the condition of VSWR<2, the tag antennas of two structures satisfy the Korea UHF RFID bandwidth and showed the gain deviation of less than 1.63 dB and 0.74 dB for without slit and with slit, respectively. On the condition of VSWR<5.8, the U-shaped tag antenna showed the gain deviation of less than 3.8 dB and 1.2 dB for without slit and with slit, respectively.

A New Method of Noncontact Measurement for 3D Microtopography in Semiconductor Wafer Implementing a New Optical Probe based on the Precision Defocus Measurement (비초점 정밀 계측 방식에 의한 새로운 광학 프로브를 이용한 반도체 웨이퍼의 삼차원 미소형상 측정 기술)

  • 박희재;안우정
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.129-137
    • /
    • 2000
  • In this paper, a new method of noncontact measurement has been developed for a 3 dimensional topography in semiconductor wafer, implementing a new optical probe based on the precision defocus measurement. The developed technique consists of the new optical probe, precision stages, and the measurement/control system. The basic principle of the technique is to use the reflected slit beam from the specimen surface, and to measure the deviation of the specimen surface. The defocusing distance can be measured by the reflected slit beam, where the defocused image is measured by the proposed optical probe, giving very high resolution. The distance measuring formula has been proposed for the developed probe, using the laws of geometric optics. The precision calibration technique has been applied, giving about 10 nanometer resolution and 72 nanometer of four sigma uncertainty. In order to quantitize the micro pattern in the specimen surface, some efficient analysis algorithms have been developed to analyse the 3D topography pattern and some parameters of the surface. The developed system has been successfully applied to measure the wafer surface, demonstrating the line scanning feature and excellent 3 dimensional measurement capability.

  • PDF

Design of Electromagnetically Coupled Small Broadband Monopole Antenna with Vertical Ground Plane (수직 접지면을 가지는 전자기적 결합 급전 소형 광대역 모노폴 안테나의 설계)

  • Kim Myung-Bum;Jung Jong-Ho;Choo Hosung;Park Ikmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.632-643
    • /
    • 2005
  • This paper presents a folded stripline-fed small broadband disk-loaded monopole antenna with vertical ground plane. The bandwidth of the proposed antenna can be enhanced by electromagnetic coupling between the shorted rectangular disk and the probe with folded strip line. The measured impedance bandwidth of the proposed antenna is $37.6\%$ for $VSWR\leq2$ with the center frequency at 2.313 GHz and has the physical dimensions of only $11mm\times11mm\times11mm$ which corresponds to the electrical length of $0.085\lambda_0\times0.085\lambda_0\times0.085\lambda_0$. For improving the radiation pattern characteristics, rectangular slits are inserted in the vertical ground plane. Rectangular slits affect the currents distribution on the ground plane, so that the antenna radiation in the direction of the ground plane is reduced more than 3 dBi. Gain of the antenna is approximately 2.6 dBi within the bandwidth.