• Title/Summary/Keyword: 직교 주파수 분할 다중 방식

Search Result 82, Processing Time 0.031 seconds

A Simple Resource Allocation Scheme for Throughput Enhancement in Relay Based OFDMA Cellular Systems (릴레이 기반의 OFDMA 시스템에서 전송량 증대를 위한 간략화 된 자원 할당 방법)

  • Oh, Eun-Sung;Ju, Hyung-Sik;Han, Seung-Youp;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.24-30
    • /
    • 2009
  • This paper presents a simple resource allocation scheme for throughput enhancement in relay based orthogonal frequency division multiple access (OFDMA) cellular systems. The resource allocation schemes, which are based on the optimization problem, have high computational complexity. That is why a searching process is required on the overall allocable resources. Since these schemes should be performed in real time, we propose a simple resource allocation scheme which has very low computational complexity. Firstly, we formulate the optimization problem and draw observations for throughput maximization. Based on observations, we propose a three step allocation scheme that separates the allocable resources into three (i.e. relay, frequency and time). By doing so, the computational complexity can be reduced. Simulation results show that the proposed scheme has near-optimum performance in spite of its low computational complexity.

A Study on the Firefly-Inspired Distributed Timing Synchronization in Ad Hoc Networks With Packet-Based Communications (패킷 기반 통신을 하는 애드 혹 네트워크에서 반딧불 영감을 받은 분산 타이밍 동기 연구)

  • Yi, Hyo Seok;Kim, Sungjin;Kwon, Dong-Seung;Jang, Sung-Cheol;Kim, Hyeong-Jin;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.575-583
    • /
    • 2013
  • In ad hoc networks, a distributed timing synchronization is studied using a firefly-inspired approach. We illuminate the exiting synchronization algorithm based on the theory of pulse-coupled oscillators so that the algorithm can be applied to multi-carrier systems through packet-based communications, where nodes communicate over an orthogonal frequency-division multiple access air interface. As our main result, we introduce a new sync-code detector, which optimally designs both the coupling function and the detection threshold when various network parameters such as the number of nodes in the network and network topology are given a priori. Computer simulations are performed to show the convergence to a synchronized state in realistic network environments.

A New Selected Mapping Scheme without Side Information Using Cross-Correlation (상호 상관을 이용한 부가정보가 필요 없는 Selected Mapping 수신방법 제안)

  • Lee, Jong-keun;Chang, Dae-ig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.739-746
    • /
    • 2017
  • Orthogonal frequency division multiplexing(OFDM) systems have many advantages. However, OFDM systems are much affected by a nonlinear distortion because those systems have a high peak to average power ratio(PAPR) value. A selected mapping technology was suggested to reduce a PAPR value. The technology does not have data loss but receivers need side information to know modified phase sequence. Therefore, side information causes decreased a transmission efficiency. In this paper, we suggest a blind SLM receiver using a cross correlation technology. This receiver does not require side information. The proposed blind SLM receiver calculates sums of cross-correlation between transmitted pilot signals multiplied by each phase sequence and received pilot signals. So, this receiver detects side information which has a maximum sum cross-correlation value. We compared our proposed SLM receiver to a conventional blind SLM receiver through bit error rate(BER) and side information error rate(SIER) performances. Simulation results show that the proposed SLM receiver has improved BER and SIER performances than the conventional SLM receiver.

Peak-to-Average Power Ratio Reduction Technique Superimposing the Rotation Phases over Pilot and Data Symbols (회전 위상을 파일롯과 데이터 심볼에 덧붙인 첨두대 평균 전력비 저감 기법)

  • Han, Tae-Young;Choi, Jung-Hun;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.53-61
    • /
    • 2007
  • This paper researches on the scheme superimposing the rotation phases over the pilot and data symbols in order to reduce the peak-to-average power ratio(PAPR) of the orthogonal frequency division multiplexing(OFDM) communication. The bandwidth and power efficiency are the main consideration. The phases of rotation vector are added to those of both pilot symbols and data symbols interlaying between any two pilot symbols in an OFDM block. Owing to this scheme the transmitter reduces the PAPR using the partial transmit sequences(PTS) and the receiver restores the data symbol utilizing the channel estimation of pilot symbols. Therefore, the bandwidth efficiency is accomplished by not using the further subcarriers for the reduction of PAPR and the enormous increase of bit error rate according to the receiving error of the side information, i.e. the phases of rotation vector, is prevented. In other words, both bandwidth-and power-efficiency and quality of communication performance can be improved.

Additional Diversity Gain in OFDM Systems under the Influence of IQ Imbalances (IQ 불균형에 의하여 왜곡된 OFDM 시스템에서의 다이버시티 이득 획득 기법)

  • Jin, Young-Hwan;Kwon, Ji-Hyeon;Lee, Yu-Ro;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1205-1213
    • /
    • 2006
  • In this paper, we analyze the IQ(In-phase/Quadrature) imbalance effects at both transmitter and receiver side of OFDM(Orthogonal Frequency Division Multiplexing) and show that IQ imbalance is the parameter to improve the performance using ML and OSIC scheme. Especially, we can archive the diversity gain due to the IQ imbalance in multipath fading environment. In addition, new preamble format is proposed, which enable estimation of the channel and IQ imbalance parameters to maximize the diversity gain. Significant performance improvement is achieved by using the ML(Maximum Likelihood)and OSIC(Ordered Successive Interference Cancellation) with compensation compared to a standard receiver with no compensation for IQ imbalance and proposed channel estimation scheme achieves the better performance improvement than conventional.

Unified DC Offset Cancellation and I/Q Regeneration with Carrier Phase Recovery in Five-Port Junction based Direct Receivers (Five-port 접합을 이용한 RF 수신기를 위한 동시 DC 오프셋 제거와 I/Q 신호 재생 알고리즘)

  • Park, Hyung-Chul;Lim, Hyung-Sun;Yu, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.64-70
    • /
    • 2007
  • This paper presents a novel unified DC offset cancellation and I/Q regeneration for five-port junction based direct receivers. It utilizes the symmetry characteristics of the single-frequency continuous-wave (CW) signal, making it possible that the proposed method can be used regardless of carrier phase offset. The proposed method eliminates the additional DC offset cancellation and reduces the I/Q regeneration parameter estimation time. Since the proposed method employs a single-frequency CW signal independent of the modulation scheme, five-port junction based direct receivers can be used for the demodulation of orthogonal frequency-division multiplexing and continuous phase modulation as well as phase shift-keying.

A PAPR Reduction Technique by the Partial Transmit Reduction Sequences (부분 전송 감소열에 의한 첨두대 평균 전력비 저감 기법)

  • Han Tae-Young;Yoo Young-Dae;Choi Jung-Hun;Kwon Young-Soo;Kim Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.562-573
    • /
    • 2006
  • It is required to reduce the peak-to-average power ratio(PAPR) in an orthogonal frequency division multiplexing system or a multicarrier system. And it is needed to eliminate the transmission of the side information in the Partial Transmit Sequences. So, in this paper, a new technique is proposed, where the subcarriers used for the multiple signal representation are only utilized for the reduction of PAPR to eliminate the burden of transmitting the side information. That is, it is proposed by taking the modified minimization criteria of partial transmit sequences scheme instead of using the convex optimization or the fast algorithm of tone reservation(TR) technique As the result of simulation, the PAPR reduction capability of the proposed method is improved by 3.2 dB dB, 3.4 dB, 3.6 dB with M=2, 4, 8(M is the number of partition in the so-called partial transmit reduction sequences(PTRS)), when the iteration number of fast algorithm of TR is 10 and the data rate loss is 5 %. But it is degraded in the capability of PAPR reduction by 3.4 dB, 3.1 dB, 2.2 dB, comparing to the TR when the data rate loss is 20 %. Therefore, the proposed method is outperformed the TR technique with respect to the complexity and PAPR reduction capability when M=2.

Effect of Bandwidth of Moving Average Filter on Symbol Timing Detection Performance (이동 평균 필터의 대역폭이 심벌 타이밍 검출 성능에 미치는 영향)

  • Lee, Jihye;Jeon, Taehyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.117-121
    • /
    • 2014
  • In the orthogonal frequency division multiplexing system, the prefix inserted between data symbols should be eliminated to apply the Fourier transform on the valid symbol interval. This functional procedure should be based on the accurate symbol timing detection. The symbol timing detection at the receiver side provides the reference for determining the beginning time index of each symbol whose initial point is located at the boundary between the preamble and the payload part. Also, the detection error is one of the main factors in the overall system performance. In this paper the effect of the bandwidth of the moving average filter on the symbol timing detection is discussed. Simulations are carried out to analyze the detection performance for the varying values of the window size of the moving average filter which is related to the filter bandwidth.

A RF MEMS Transmitter Based on Flexible Printed Circuit Boards (연성 인쇄 회로 기판을 이용한 초고주파 MEMS 송신기 연구)

  • Myoung, Seong-Sik;Kim, Seon-Il;Jung, Joo-Yong;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper presents the flexible MEMS transmitter based on flexible printed circuit board or FPCB, which can be transformed to arbitrary shape. The FPCB is suitable to fabricate light weight and small size modules with the help of its thin thickness. Moreover a module based on FPCB can be attached on the arbitrary curved surface due to its flexible enough to be lolled up like paper. In this paper, the flexible MEMS transmitter integrated on FPCB for a short-distance sensor network which is based on orthogonal frequency division multiplexing(OFDM) communication system is proposed. The active device of the proposed flexible MEMS transmitter is fabricated on InGaP/GaAs HBT process which has been used for power amplifier design to take advantages of high linear and high efficient characteristics. Moreover, the passive devices such as the filter and signal lines are integrated and fabricated on the FPCB board. The performance of the fabricated flexible MEMS transmitter is analyzed with EVM characteristics of the output signal.

Design of Low-power Serial-to-Parallel and Parallel-to-Serial Converter using Current-cut method (전류 컷 기법을 적용한 저전력형 직병렬/병직렬 변환기 설계)

  • Park, Yong-Woon;Hwang, Sung-Ho;Cha, Jae-Sang;Yang, Chung-Mo;Kim, Sung-Kweon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.776-783
    • /
    • 2009
  • Current-cut circuit is an effective method to obtain low power consumption in wireless communication systems as high speed OFDM. For the operation of current-mode FFT LSI with analog signal processing essentially requires current-mode serial-to-parallel/parallel-to-serial converter with multi input and output structure. However, the Hold-mode operation of current-mode serial-to-parallel/parallel-to-serial converter has unnecessary power consumption. We propose a novel current-mode serial-to-parallel/parallel-to-serial converter with current-cut circuit and full chip simulation results agree with experimental data of low power consumption. The proposed current-mode serial-to-parallel/parallel-to-serial converter promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.