• Title/Summary/Keyword: 직교격자

Search Result 121, Processing Time 0.035 seconds

Axial Fatigue Behavior of Structural Cables (구조용 케이블의 축방향 피로거동)

  • Suh, Jeong In;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.589-600
    • /
    • 1998
  • This study was planned to verify the usefulness of Latin square design method in fatigue tests of cables and to see the axial fatigue behavior of wire ropes being used as hangers in suspension bridges. Three parameters : mean stress, stress range. and specimen length, were adopted for verification. The effects of these parameters are in argument except for stress range. Three classes in each parameter were used. Triple replication was performed in each cell to increase the number of replication (or degree of freedoms). The major cause of fatigue failure was fretting fatigue at trellis contact point. Three chosen parameters were proved to be significant. It was verified that the effect of stress range was in agreement with expectation, but the effect of specimen length was contrary to the expectation. It was also observed that the effect of mean stress depended upon the chosen level. Therefore Latin square design method is effective for verifying the parameters that affect fatigue behaviour under orthogonality conditions.

  • PDF

Structural Optimization for LMTT-Mover Using the Kriging Based Approximation Model (크리깅 근사모델 모델을 이용한 LMTT 이동체의 구조최적설계)

  • Lee, Kwon-Hee;Park, Hyung-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.385-390
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PLMSL (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, the DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the structural responses. Then, the GRG(Generalized Reduced Gradient) method built in Excel is adopted to determine the optimum. The objective function is set up as weight. On the contrary, the design variables are considered as transverse, longitudinal and wheel beam's thicknesses, and the constraints are the maximum stresses generated by four loading conditions.

  • PDF

Study on Structural Stability Analysis of Excavation Stage Considering Excavation Process and Supporting Materials in Room-and-Pillar Underground Space (격자형 지하공간에서 굴착 공정과 지보재를 고려한 굴착 단계별 구조 안정성 해석 연구)

  • Soon-Wook, Choi;Soo-Ho, Chang;Tae-Ho, Kang;Chulho, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2022
  • The room-and-pillar method or grid-type underground space is a method of forming a space by excavating the excavation part at regular intervals so that it is orthogonal and using natural rock mass as a structure. Such excavation may appear different in size from the excavation stage where the maximum displacement occurs depending on the excavation direction and sequence. In this study, considering the installation of support materials such as shotcrete and rock bolts for the optimal design of the excavation process, the safety and constructability of the design and construction of the grid-type underground space under specific ground conditions were analytically reviewed. The ground conditions were set using an numerical method, and the stress at pillar and displacement at center of room were considered for each excavation stage and construction type under a constant surcharge. The height of the space was 8m, which was set higher than the size of a general office, and was reviewed in consideration of equipment and plant facilities. In addition, the degree of displacement control according to the installation of support materials was reviewed in consideration of shotcrete and rock bolts.

Analysis of the Electromagnetic Scattering of Resistive Strip Grating with Uniform Resistivity on a Grounded Dielectric Layer - H-Polarization Case - (접지된 유전체 위의 저항율이 일정한 저항띠 격자구조에 대한 전자파 산란 해석 - H-분극인 경우 -)

  • Tchoi Young-Sun;Yang Seung-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.321-327
    • /
    • 2006
  • In this paper, when a H-polarized plane wave is incident on the grating consisting of uniform resistive strips, electromagnetic scattering is analyzed using the moment of methods (MoM). The current density of each resistive strip on a grounded dielectric plane is fixed by zero at both edges. To satisfy the condition at both ends of each resistive strip, the induced surface current density is expanded in a series of cosine and sine functions. The scattered electromagnetic fields are expanded in a series of floquet mode functions. The boundary conditions are applied to obtain the unknown current coefficients. According to the variation of the involving parameters such as strip width and spacing and angle of the incident field, numerical simulations are performed by applying the Fourier-Galerkin moment method. The numerical results of the normalized reflected power for resistive strips case for zero and several resistivities are obtained.

Analysis of E-polarized Plane Wave Scattering by a Tapered Resistive Strip Grating in a Grounded Double Dielectric Layer (접지된 2중 유전체 사이의 저항 띠 격자 구조에 의한 E-분극 전자파 산란 해석)

  • Tchoi, Young-Sun;Yang, Seung-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.656-663
    • /
    • 2007
  • In this paper, when a E-polarized plane wave is incident on the grating consisting of tapered resistive strips, electromagnetic scattering is analyzed using the method of moments(MoM). The induced current density of each resistive strip in a grounded double dielectric layer is expected to blow up at both edges. To satisfy this, the induced surface current density is expanded in a series of Chebyshev polynomials of the second kind. The scattered electromagnetic fields are expanded in a series of Floquet mode functions. The boundary conditions are applied to obtain the unknown current coefficients. According to the variation of the involving parameters such as strip width and spacing and angle of the incident field, numerical simulations are performed by applying the Fourier-Galerkin moment method. The numerical results of the normalized reflected power for resistive strips case for several resistivities are obtained.

Cure Monitoring of Composite Laminates Using Fiber Optic Sensors (광섬유 센서를 이용한 복합재료 적층판의 성형 모니터링)

  • Gang, Hyeon-Gyu;Gang, Dong-Hun;Park, Hyeong-Jun;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2002
  • In this paper, we present the simulataneous monitoring of the strain and temperature during cures f various composite laminates using fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors. Three types of graphite/epoxy composite were used : a undirectional laminate, a symmetric cross-ply laminate, and a fabric laminate. Two FBG/EFPI hybrid sensors were embedded in each laminate at different directions and different locations. We performed the real time monitoring of fabrication strains and temperatures at two points within the composite laminates during cure process in an autoclave. Throuhg these experiments, FBG/EFPI sensors proved to be an efficient choice for smart cure monitoring of composite structures.

Spatio-Temporal Drought Quantification using Severity-Area-Frequency Curve (가뭄심도-영향면적-지속기간곡선을 이용한 가뭄의 시공간적 정량화)

  • Kim, Bo-Kyung;Kim, Sang-Dan;Kyoung, Min-Soo;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1991-1995
    • /
    • 2006
  • 본 연구에서는 제반 수문학적 문제 해결을 위하여 강우사상에 대해 최대평균우량깊이-유역면적-지속기간 관계곡선의 항목 중 최대평균우량깊이를 가뭄심도의 항으로 대체한 가뭄심도-영향면적-지속기간 관계 곡선의 작성방법을 제시하고자 한다. 제주도를 포함한 우리나라 전역의 기상청 월강수량을 이용하여 SPI 가뭄지수를 산정하고 EOF 기법을 적용하여 공간정보로 축약하였다. 이후 Kriging 기법으로 $6km{\times}6km$의 해상도를 가진 SPI값으로 할당함으로써 격자기반의 가뭄지수 자료의 시간 및 공간특성을 고려할 수 있다. 이에 근거하여 주요 가뭄사상을 식별 및 분석하여 영향면적별 가뭄지수를 산정하고 이에 따라 가뭄심도-가뭄면적-가뭄지속기간 관계곡선을 도시하였다. 관계곡선 작성 결과 각 지속기간에 대하여 특정한 면적 이상에서 가뭄심도가 완만하게 감소하는 형태를 보여 공간적 국지성 및 시간적 단속성이 강한 홍수와는 시 공간적으로 다르게 거동되고 있었으며 가뭄심도의 면적에 따른 감소율은 가뭄분석시의 강우깊이의 면적에 따른 감소율과 비교하였을 때 훨씬 작은 것으로 분석되었다.

  • PDF

A Functional Assessment of Nakdong River Barrage for Preventing Salinity Intrusion Using EFDC Model (EFDC를 이용한 낙동강 하구둑 염수침입방지 기능 평가)

  • Son, Yong-Ku;Jeong, Sang-Man;Cha, Kee-Uk;Hur, Young-Teck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2018-2022
    • /
    • 2009
  • 본 연구에서는 낙동강 하구둑의 주요 기능 중에서 용수공급에 지장을 초래하는 염수침입 및 염해피해 방지 효과에 대하여 재평가 하고자 한다. 평가범위는 수치모형을 이용하여 낙동강 하구둑 건설 이전의 지형상황을 재현하고, 하구둑이 없는 조건 하에서 상류유입유량을 변화시키며 외해를 통한 염분 침입 가능범위를 수치모의 함으로서 하구둑의 효과를 간접적으로 평가하였다. 연구에 사용된 수치모형인 EFDC 모형 입력자료로 낙동강 하류부 및 외해 수역에 대한 3차원 지형도를 작성하였고. 평면 직교곡선격자망을 이용하여 대상 지역을 분할하였다. 초기조건으로 전 수역을 담수(염도 0.0psu)로 가정한 상태에서 하류단 경계에 실측 조위 및 해수조건(염도 33psu)을 적용하고 상류단에는 $50m^3/sec$를 적용하여 약 20일간 수행된 결과를 사용하였다. 상류유입유량을 $10^{\sim}250m^3/sec$의 범위로 변화시키고, 하류단 경계조건으로 조위를 적용하여 수치모의를 수행한 결과 염수침입현상에 제일 큰 영향을 미치는 요소는 상류로부터 유입하는 유량인 것으로 나타났다. 그 이외에 담수와 해수의 밀도 차이에 인한 밀도류형성 및 조석에 의한 염수의 밀어올림현상이 하류에서 상류로 염수가 침입하는데 다소의 영향이 있었다. 유입유량이 $250m^3/sec$에서 $10m^3/sec$로 감소할 경우 염분농도 1psu의 도달범위는 11km에서 50km정도로 증가하였다.

  • PDF

A Numerical Study on the Flow of a Model Intake Port Using Low Reynolds Number (저 레이놀즈수 k-ε난류모형에 의하 축대칭 모형포트 유동의 수치해석적 연구)

  • Hong, Y.J.;Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 1994
  • In this study, flow of a model intake port/valve system is analyzed by using low Reynolds number $k-{\varepsilon}$ model. Discharge coefficient was obtained from computational results for the various cases of valve lifts. Discharge coefficient becomes maximum when the valve lift is 20mm, and does not increase or decrease in proportional to valve lift. Most of pressure drop and production of turbulent kinetic energy occur at the edge points of the valve and the valve seat Thus, in order to improve discharge coefficient, rounding of edge points in valve and valve seat is recommended. As valve lift is increased, the velocity of the intake jet in the valve passage decreases, and the direction of the jet is more inclined toward the valve seat.

  • PDF

Mold Filling Simulation with Cut Cell in the Cartesian Grid System (직교 격자 계에서 주조 유동 시뮬레이션의 정확한 해석 방법)

  • Choi, Young-Sim;Nam, Jeong-Ho;Hong, Jun-Ho;Hwang, Ho-Young
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Cartesian grid system has mainly been used in the casting simulation even though it does not nicely represent sloped and curved surfaces. These distorted boundaries cause several problems. A special treatment is necessary to clear these problems. In this paper, we propose a new method that can consider the cutting cells which are cut by casting and mold based on the partial cell treatment (PCT). This method provides a better representation of geometry surface and will be used in the computation of velocities that are defined on the cell boundaries in the Cartesian grid system. Various test examples for several casting process were computed and validated. The analysis results of more accurate fluid flow pattern and less momentum loss owing to the stepped boundaries in the Cartesian grid system were confirmed. By using the cut cell method, performance of computation gets better because of reducing the whole number of meshes.