• Title/Summary/Keyword: 지화학적 추적자

Search Result 3, Processing Time 0.017 seconds

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Bioaccumulation of Ag and Zn in earthworms (Eisenia fetida) from soil contaminated with Ag and Zn nanoparticles using a radiotracer method (방사성동위원소 추적자 기법을 이용한 제조나노입자로 오염된 토양으로부터 지렁이(Eisenia fetida)의 은과 아연 축적 연구)

  • Seung Ha Lee;Byeong-Gweon Lee
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.550-558
    • /
    • 2021
  • In a radiotracer study, the bioaccumulation and efflux of metals in earthworms (Eisenia fetida) exposed to soil spiked with ZnO and Ag nanoparticles (AgNP) were compared to those exposed to soil spiked with ionic Zn and Ag. Additionally, the bioavailability and chemical mobility of nano- and ionic metals in the soil were estimated using the sequential extraction method and compared to the bioaccumulation factor(BAF). The BAF for ZnO (0.06) was 31 times lower than that for Zn ions (1.86), suggesting that ZnO was less bioavailable than the ionic form in contaminated soil. In contrast, the BAFs for two types of AgNPs coated with polyvinylpyrrolidone (0.12) or citrate (0.11) were comparable to those of ionic Ag (0.17). The sequential extraction of metals from the soil suggests that the chemically mobile fractions in the Zn ion treatment were higher(35%) than those (<20%) in the Ag ion treatment, which was consistent with the greater BAFs in the former than the latter. However, the chemical mobility in the ZnO treatments did not predict bioavailability. The efflux rates of Ag (3.2-3.8% d-1) in the worms were 2-3×those(1.2-1.7% d-1) for Zn.

Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea (황해 남동부 흑산니질대 퇴적물의 분포, 지화학적 조성 및 퇴적물 기원지)

  • Ha, Hun Jun;Chun, Seung Soo;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.289-302
    • /
    • 2013
  • In order to determine the provenance of the Huksan Mud Belt sediments in the southeastern Yellow Sea, the major and rare earth elements of the same sediments were analyzed. The surface sediments were sampled from top of piston-cores and box-cores taken at 51 sites within the Huksan Mud Belt. With the mean grain size of $5-6{\phi}$, the sediments of the study area are mud-dominated. The spatial distribution patterns show that silt content is high in the northern Mud Belt, whereas clay content increases as it moves toward the southern Mud Belt. Interestingly, the geochemical compositions both of major and rare earth elements have resulted in differences of sediment provenance. Among the major elements, plots of Fe/Al vs. Mg/Al ratios, $Al_2O_3$ vs. MgO ratios, and $Al_2O_3$ vs. $K_2O$ reveal that the Huksan Mud Belt sediments are dominated by the Korean river-derived sediments. However, the characteristics of rare earth elements infer sediments originating from the Chinese rivers. This discrepancy between the above provenances is attributed to the different contributory factors in the content of chemical elements. Considering strong correlation between major elements with grain sizes, the contents of the major elements are thought to be influenced by the grain size. However, there is a weak correlation between rare earth elements and grain sizes. The behaviour of rare earth elements may be controlled by heavy minerals, rather than grain sizes. Further study requires to solve the discrepancy arose from the difference in applied chemical tracers.