• Title/Summary/Keyword: 지형지수

Search Result 438, Processing Time 0.032 seconds

A Study on Health Impact Assessment and Emissions Reduction System Using AERMOD (AERMOD를 활용한 건강위해성평가 및 배출저감제도에 관한 연구)

  • Seong-Su Park;Duk-Han Kim;Hong-Kwan Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Purpose: This study aims to quantitatively determine the impact on nearby risidents by selecting the amount of chemicals emitted from the workplace among the substances subject to the chemical emission plan and predicting the concentration with the atmospheric diffusion program. Method: The selection of research materials considered half-life, toxicity, and the presence or absence of available monitoring station data. The areas discharged from the materials to be studied were selected as the areas to be studied, and four areas with floating populations were selected to evaluate health risks. Result: AERMOD was executed after conducting terrain and meteorological processing to obtain predicted concentrations. The health hazard assessment results indicated that only dichloromethane exceeded the threshold for children, while tetrachloroethylene and chloroform appeared at levels that cannot be ignored for both children and adults. Conclusion: Currently, in the domestic context, health hazard assessments are conducted based on the regulations outlined in the "Environmental Health Act" where if the hazard index exceeds a certain threshold, it is considered to pose a health risk. The anticipated expansion of the list of substances subject to the chemical discharge plan to 415 types by 2030 suggests the need for efficient management within workplaces. In instances where the hazard index surpasses the threshold in health hazard assessments, it is judged that effective chemical management can be achieved by prioritizing based on considerations of background concentration and predicted concentration through atmospheric dispersion modeling.

Satisfaction and Perception Analysis of Parks of the 1st and 2nd Generation New Towns (1·2기 신도시 공원 이용자의 만족도와 인식 분석)

  • Kim, Youngmin;Hue, Younsun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.4
    • /
    • pp.1-17
    • /
    • 2024
  • This study analyzed the behaviors and satisfaction of park users in nine parks representing first and second-generation new towns, aiming to propose directions for planning new town parks. According to the analysis, park users in new towns mainly visit parks for purposes such as relaxation, strolling, and exercise, often with family, alone, or with friends. They typically spend 1-2 hours in the park and mostly access it on foot. Additionally, satisfaction with park accessibility is high, particularly among pedestrians. Satisfaction survey results indicate that pedestrian pathways, trees and vegetation, water features, rest areas, and cultural facilities have the greatest impact on overall park satisfaction. Playgrounds and sports facilities show relatively lower satisfaction levels, indicating a need for improvement. Furthermore, according to NPS analysis, park users are highly willing to recommend parks, especially with Gwanggyo Lake Park and Dongtan Central Park receiving high recommendation scores. IPA analysis shows that pathways and vegetation are perceived as highly important and satisfactory, while playgrounds and sports facilities are categorized as areas needing improvement. Thus, there is a need to consider improvement strategies for each. Additionally, identifying park users' grievances can lead to creating a better park environment. Finally, concerning the planning direction for new town parks, linear-shaped parks facilitating walking are preferred, with parks preserving natural terrain and forests deemed the most desirable. Based on these results, future city parks, including those in the third-generation new towns, should harmonize with nature and prioritize pedestrian access.

Estimation of the Moisture Maximizing Rate based on the Moisture Inflow Direction : A Case Study of Typhoon Rusa in Gangneung Region (수분유입방향을 고려한 강릉지역 태풍 루사의 수분최대화비 산정)

  • Kim, Moon-Hyun;Jung, Il-Won;Im, Eun-Soon;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.697-707
    • /
    • 2007
  • In this study, we estimated the PMP(Probable Maximum Precipitation) and its transition in case of the typhoon Rusa which happened the biggest damage of all typhoons in the Korea. Specially, we analysed the moisture maximizing rate under the consideration of meteorological condition based on the orographic property when it hits in Gangneung region. The PMP is calculated by the rate of the maximum persisting 12 hours 1000 hPa dew points and representative persisting 12 hours 1000 hPa dew point. The former is influenced by the moisture inflow regions. These regions are determined by the surface wind direction, 850 hPa moisture flux and streamline, which are the critically different aspects compared to that of previous study. The latter is calculated using statistics program (FARD2002) provided by NIDP(National Institute for Disaster Prevention). In this program, the dew point is calculated by reappearance period 50-year frequency analysis from 5% of the level of significant when probability distribution type is applied extreme type I (Gumbel distribution) and parameter estimation method is used the Moment method. So this study indicated for small basin$(3.76km^2)$ the difference the PMP through new method and through existing result of established storm transposition and DAD(Depth-Area-Duration). Consequently, the moisture maximizing rate is calculated in the moisture inflow regions determined by meteorological fields is higher $0.20{\sim}0.40$ range than that of previous study. And the precipitation is increased $16{\sim}31%$ when this rate is applied for calculation.

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.

Negative Ion Generation Index according to Altitude in the Autumn of Pine Forest in Gyeongju Namsan (경주 남산 소나무림의 가을철 해발고도별 음이온 발생지수)

  • Kim, Jeong Ho;Yoon, Ji Hun;Lee, Sang Hoon;Choi, Won Jun;Yoon, Yong Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.4
    • /
    • pp.413-424
    • /
    • 2018
  • The study analyzed the effects of topographic structures and altitude in mountainous parks in Mt. Namsan in Gyeongju on the generation of anions. The temperature was at ridge ($9.82^{\circ}C$) > valley ($8.44^{\circ}C$), the relative humidity valley (59.01 %) > ridge (58.64 %), the solar radiation ridge ($34.40W/m^2$) > valley($14.69W/m^2$), the wind speed ridge (0.63m/s) > valley(0.37m/s), and the negative ion valley($636.81ea/cm^3$) > ridge($580.04ea/cm^3$). In the valley, the correlation with altitude was verified for the temperature, relative humidity, solar radiation, and negative ion generation in the valley. The relative humidity, solar radiation, and negative ion indicated a positive correlation while the temperature had a negative correlation. In the ridge, the correlation with altitude was verified for the temperature, relative humidity, wind speed, solar radiation, and negative ion generation. The relative humidity, solar radiation, and negative ion generation indicated a positive correlation while the temperature and wind speed had a negative correlation. The regression analysis showed the prediction equation of y=-0.006x+9.663 (x=altitude, y=temperature) in the valley and y=-0.009x+11.595 (x=altitude, y=temperature) in the ridge for the temperature, y=0.027x+53.561 (x=altitude, y=relative humidity) in the valley and y=0.008x+56.646 (x=altitude, y=relative humidity) in the ridges for the relative humidity, and y=0.027x+53.561 (x=altitude, y=negative Ion generation) in the valley and y= 0.008x+56.646 (x=altitude, y=negative Ion generation) in the ridge for the negative ion generation.

Heavy Metal Contamination around the Abandoned Au-Ag and Base Metal Mine Sites in Korea (국내 전형적 금은 및 비(base)금속 폐광산지역의 중금속 오염특성)

  • Chon Hyo-Taek;Ahn Joo Sung;Jung Myung Chae
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.101-111
    • /
    • 2005
  • The objectives of this study we to assess the extent and degree of environmental contamination and to draw general conclusions on the fate of toxic elements derived from mining activities in Korea. 인t abandoned mines with four base-metal mines and four Au-Ag mines were selected and the results of environmental surveys in those areas were discussed. In the base-metal mining areas, the Sambo Pb-Zn-barite, the Shinyemi Pb-Zn-Fe, the Geodo Cu-Fe and the Shiheung Cu-Pb-Zn mine, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials, tailings and slag. Furthermore, agricultural soils, stream sediments and stream water near the mines were severely contaminated by the metals mainly due to the continuing dispersion downstream and downslope from the sites, which was controlled by the feature of geography, prevailing wind directions and the distance from the mine. In e Au-Ag mining areas, the Kubong, the Samkwang, the Keumwang and the Kilkok mines, elevated levels of As, Cd, Cu, Pb and Zn were found in tailings and mine dump soils. These levels may have caused increased concentrations of those elements in stream sediments and waters due to direct dis-charge downstream from tailings and mine dumps. In the Au-Ag mines, As would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and mobility of these metals would be enhanced by the effect of oxidation. According to sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. As application of pollution index (PI), giving data on multi-element contamination in soils, over 1.0 value of the PI was found in soils sampled at and around the mining areas.

Landscape Analysis of the Hallasan National Park in a Jeju Island Biosphere Reserve: Fragmentation Pattern (제주 생물권보전지역 내 한라산국립공원의 경관분석 : 단편화 현상)

  • Kang, Hye-Soon;Kim, Hyun-Jung;Chang, Eun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.309-319
    • /
    • 2008
  • Roads are an indicator of anthropogenic activity causing ecosystem disturbances and often lead to habitat fragmentation, habitat loss, and habitat isolation. The Hallasan National Park(153.4$km^2$) on Jeju Island being distinguished for its unique geology, topography, and biota has also been designated as a core area of UNESCO Man and the Biosphere(MAB) Reserve. Although the high conservation value of this park has contributed to a rapid growth of tourists and road construction, landscape changes due to roads have not been examined yet. We used GIS systems to examine the fragmentation pattern caused by roads, in relation to its zonation, elevation, and vegetation. When a buffer was applied to roads(112m width for paved roads and 60m width for both legal and illegal trails), the park consisted of 100 fragments. The ten fragments generated after applying buffer to only paved roads and legal trails ranged from $0.002km^2$ to $38.2km^2$ with a mean of $14.2km^2$, and about 7% of both nature conservation zone and nature environment zone of the park were edge. Fragments in both east and west ends of the park and around the summit exhibited relatively high shape indices with means of 5.19(for 100 fragments) and 7.22(for 10 fragments). All five legal trails are connected to the pit crater of the mountain and vegetation changed from broadleaf forests and conifer forests to grasslands with elevation, consequently resulting in dramatic fragment size reduction in grasslands at high elevation, in particular above 1,400m, where endemic and alpine plants are abundant. These results show that in Hallasan National Park the risks of habitat deterioration and habitat loss due to fragmentation may be more severe in the nature conservation zone dominated by Baengnokdam than in the nature environment zone. Therefore, current road networks of the park appear to fall short of the goal of the national park for ecosystem conservation and protection. Considering that the entire Hallasan National Park also serves as a MAB core area, conservation efforts should focus, first of all, on park rezoning and road management to mitigate habitat fragmentation.

Pathogenicity of Two Species of Sclerotium to Nine Cultivars of Garlic Cultivated Widely in Korea (마늘의 흑색썩음균핵병에 대한 품종저항성의 역학적 평가)

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Cho, Weon-Dae;Kim, Tack-Soo;Shim, Hong-Sik;Lee, Yong-Hwon;Lee, Chan-Jung;Lee, Seong-Chan
    • Research in Plant Disease
    • /
    • v.10 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • Mycelial growth and days required for sclerotial formation(DRSF) in vitro, and disease incidence of infected plants in the field were investigated to evaluate disease resistance of nine garlic cultivars against two species of Sclerotium causing garlic white rot. There were differences among mycelial growth and sclerotial formation of two white rot pathogens on different garlic cultivars in vitro. Mycelial growth showed the highest level on the clove of 'Daeseo'. Sclerotia of two white rot pathogen were formed the earliest on the clove of 'Kodang' and the latest on the clove of 'Namdo'. In field trial all of nine garlic cultivars were highly susceptible to Sclerotium cepivorum and cold-type garlics were less susceptible than warm-type garlics. Meanwhile garlic cultivars used showed differences among resistant responses to Sclerotium sp., forming large sclerotia. All of warm-type garlics showed highly susceptible response, but three cold-type garlics, 'Seosan', 'Danyang' and 'Yechon' showed moderate resistant response and 'Euisung' showed resistant response. To evaluate cultivar resistance of garlics quantitatively disease progress curve was transformed as linear regression equation. Among the intercept (early disease incidence) and the slope (disease infection rate) obtained from the transformed equation, final disease incidence, and area under disease progress curve(AUDPC), AUDPC was the most effective to evaluate disease resistance of garlics to both of white rot pathogens. There was little correlation between mycelial growth and sclerotial formation on garlic cloves in vitro, and epidemiological parameters (early disease incidence, final disease incidence, disease infection rate, AUDPC) obtained from the field trial. Mycelial growth of S. cepivorum was positively correlated with final disease incidence and disease infection rate obtained from the field trial, meanwhile DRSF was negatively correlated with the epidemiological parameters.

Movement of Cold Water Mass in the Northern East China Sea in Summer (하계 동중국해 북부 해역에서 저층 냉수괴의 거동)

  • Jang, Sung-Tae;Lee, Jae-Hak;Kim, Cheol-Ho;Jang, Chan-Joo;Jang, Young-Suk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The Yellow Sea Cold Water (YSCW) is formed by cold and dry wind in the previous winter, and is known to spread southward along the central trough of the Yellow Sea in summer. Water characteristics of the YSCW and its movement in the northern East China Sea (ECS) are investigated by analyzing CTD (conductivity-Temperature-Depth) data collected from summertime hydrographic surveys between 2003 and 2009. By water mass analysis, we newly define the North Western Cold Water (NWCW) as a cold water mass observed in the study area. It is characterized by temperature below $13.2^{\circ}C$, salinity of 32.6~33.7 psu, and density (${\sigma}_t$) of 24.7~25.5. The NWCW appears to flow southward at about a speed less than 2 cm/s according to the geostrophic calculation. The newly defined NWCW shows an interannual variation in the range of temperature and occupied area, which is in close relation with the sea surface temperature (SST) over the Yellow Sea and the East China Sea in the previous winter season. The winter SST is determined by winter air temperature, which shows a high correlation with the winter-mean Arctic Oscillation (AO) index. The negative winter-mean AO causes the low winter SST over the Yellow Sea and the East China Sea, resulting in the summertime expansion and lower temperature of the NWCW in the study area. This study shows a dynamic relation among the winter-mean AO index, SST, and NWCW, which helps to predict the movement of NWCW in the northern ECS in summer.

The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean (태안 남해포 갯벌 패류양식해역의 환경특성)

  • Choi, Yoon Seok;Park, Kwang Jae;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Song, Jae Hee
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 2013
  • To assess the effect of environmental factors on the sustainability of cultured production shellfish, we investigated the habitat characteristics of tidal flat (Namhae-po in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several site of tidal flat to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain size for research area of tidal flat were similar at the ratio of silt and clay in comparison with the other site of it. The C/N ratio was more than 5.0, reflecting the range arising from the mix of marine organism and organic matter. The C/S ratio (about 2.8) showed that survey area had anoxic or sub-anoxic bottom conditions. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. Adult surf clam (Mactra veneriformis) density was highest at St. 2 (middle part of the Namhae-po), on the other hand, surf clam spat density was highest at St. 3 (lower part of the Namhae-po). Heavy rain, terrigenous suspended clay with fresh water from neighboring agricultural land, and severe high air temperature during summer could be thought as detrimental causes of spat and adult mortality in Namhae-po tidal flat. We suggested that the growth of shellfish in the tidal flat was effected by the various environmental conditions, so an improvement in the cultured method was needed.