• Title/Summary/Keyword: 지형도축척

Search Result 74, Processing Time 0.016 seconds

A Study on Interpolation methods and size of grid to the various topographical characteristics for the construction of DEM(Digital Elevation Model) (수치표고모형(DEM) 구축을 위한 지형별 보간 방법 및 격자크기에 관한 연구)

  • Woo, Je-Yoon;Koo, Jee-Hee;Hong, Chang-Hee;Kim, Tae-Hoon
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.2 s.6
    • /
    • pp.5-19
    • /
    • 2001
  • We are able to construct and utilize DEM(Digital Elevation Model) throughout the NGIS(National Geographic Information System) project. It is important that interpolation methods and appreciate size of grid for the construction of accurate DEM(Digital Elevation Model). There were several references related to the DEM(Digital Elevation Model) construction method, however they couldn't consider various topographical characteristics in the korea. In this study, we recommended that suitable interpolation method for each topographic element. After dividing Poonggi area into mountain, hill, urban, agricultural land, we constructed DEM(Digital Elevation Model) with various interpolation methods and grid size using 1:5,000 digital map. Then evaluated accuracy using elevation data which extracted from air-photo. The interpolation methods were analyzed and compared for various topographical conditions. As a result, Kriging method was superior to TIN method for all the topographical conditions. Another experiment was performed to examine optimal grid space for DEM with each topographical condition. 10m grid space was most suitable for mountain area and hilly districts, while 30m grid space was most suitable for urban area and farm land.

  • PDF

Estimation of Fractal Dimension According to Stream Order in the leemokjung Subbasin (이목정 소유역의 하천차수를 고려한 프랙탈 차원의 산정)

  • Go, Yeong-Chan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.587-597
    • /
    • 1998
  • Researchers have suggested that the fractal dimension of the stream length is uniform in all the streams of the basin and the estimates of the fractal dimension are in between 1.09 and 1.13 which may be considerably large values. In this study, the fractal dimension for the Ieemokjung subbasin streams in the Pyungchang River basin which is one of the IHP representative basins in Korea are estimated for each stream order using three scale maps of a 1/50,000, 1/25,000, and 1/5,000. As a result, the fractal dimension of the stream length is different by stream order and the fractal dimension of all streams shows a lower value in comparison to that of the previous studies. As a result of the fractal dimension estimation for the Ieemokjung subbasin streams, we found that the fractal dimension of the stream length shows different estimates in stream orders. The fractal dimension of 1st and 2nd order stream is 1.033, and the fractal dimension of 3rd and 4th order stream is 1.014. This result is different from the previous studies that the fractal dimension of the stream length is uniform in all streams of the basin. The fractal dimension for a whole stream length is about 1.027. Therefore, the previous estimates of 1.09 and 1.13 suggested as the fractal dimension of the stream length may be overestimated in comparison with estimated value in this study.

  • PDF

A Study on the Forest Vegetation of Deogyusan National Park (덕유산 국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • From March 2012 to January 2013, this study was conducted as a part of the project for making a precise electronic ecological zoning map of vegetation on a highly reduced scale of 1 to 5,000 with a view to improving management efficiency of national parks and enlarging the availability of the data produced from the basic research monitoring the resources of national parks. For the research accuracy and rapidity, a vegetation map was specially created for the on-the-site-vegetation research. To make the map more meticulous, we categorized the vegetation database into five groups: broadleaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. After comparing the results of the data built for the vegetation research and the actual research findings, it was made clear that vegetation of both categories was almost the same in case of broad-leaved forest with 72.20% and 78.45% respectively, and also equivalent in other groups like, for example, coniferous forest (16.70%, 13.41%), mixed forest (9.50%, 7.49%) and rock vegetation (0.60%, 0.15%). According to the precise vegetation map produced from the research, the deciduous broad-leaved forest was the most widely prevalent type in the correlated hierarchical classification of vegetation, occupying 65.78% of the overall vegetation. It was followed by mountain valley forest (15.17%), coniferous forest (10.90%), and plantation forest (7.00%) in order. It is particularly noteworthy that Mt. Deogyusan national park has retained a very stable and versatile forest vegetation in the outstanding state since approximately 20% of the mountain turns out to belong to the I grade vegetation conservation classification which contains climax forests, unique vegetation, subalpine vegetation, matured stands which are older than 50 years and etc.

Estimation of the Three-dimensional Vegetation Landscape of the Donhwamun Gate Area in Changdeokgung Palace through the Rubber Sheeting Transformation of (<동궐도(東闕圖)>의 러버쉬팅변환을 통한 창덕궁 돈화문 지역의 입체적 식생 경관 추정)

  • Lee, Jae-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.138-153
    • /
    • 2018
  • The purpose of this study was to analyze , which was made in the late Joseon Dynasty to specify the vegetation landscape of the Donhwamun Gate area in Changdeokgung Palace. The study results can be summarized as below. First, based on "Jieziyuan Huazhuan(芥子園畵傳)", the introductory book of tree expression delivered from China in the 17th century, allowed the classification criteria of the trees described in the picture to be established and helped identify their types. As a result of the classification, there were 10 species and 50 trees in the Donhwamun Gate area of . Second, it was possible to measure the real size of the trees described in the picture through the elevated drawing scale of . The height of the trees ranged from a minimum of 4.37 m to a maximum of 22.37 m. According to the measurement results, compared to the old trees currently living in Changdeokgung Palace, the trees described in the picture were found to be produced in almost actual size without exaggeration. Thus, the measured height of the trees turned out to be appropriate as baseline data for reproduction of the vegetation landscape. Third, through the Rubber Sheeting Transformation of , it was possible to make a ground plan for the planting of on the current digital topographic map. In particular, as the transformed area of was departmentalized and control points were added, the precision of transformation improved. It was possible to grasp the changed position of planting as well as the change in planting density through a ground plan of planting of . Lastly, it was possible to produce a three-dimensional vegetation landscape model by using the information of the shape of the trees and the ground plan for the planting of . Based on the three-dimensional model, it was easy to examine the characteristics of the three-dimensional view of the current vegetation via the view axis, skyline, and openness to and cover from the adjacent regions at the level of the eyes. This study is differentiated from others in that it verified the realism of and suggested the possibility of ascertaining the original form of the vegetation landscape described in the painting.