• Title/Summary/Keyword: 지형공간정보시스템

Search Result 519, Processing Time 0.028 seconds

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.

A Design of Feature-based Data Model Using Digital Map 2.0 (수치지도 2.0을 이용한 객체기반 데이터 모델 설계)

  • Lim, Kwang-Hyeon;Jin, Cheng Hao;Kim, Hyeong-Soo;Li, Xun;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.33-43
    • /
    • 2012
  • In With increase of a demand on the spatial data, the need of spatial data model which can effectively store and manege spatial objects becomes more important in many GIS applications. There are many researches on the spatial data model. Several data models were proposed for some special functions, however, there are still many problems in the management and applications. Digital Map is one of spatial data model which is being used in Korea. The existing Digital Map is based on the Tiles. This approach needs more cost in its construction and management. Therefore, in this paper, we propose a feature-based seamless data model with Digital map 2.0 which is based on Tiles. This model can be easily constructed and managed in the large databases so that it is able to apply to any systems. The proposed model uses the relationships between features to correct updated data and the Unique Feature IDentifier(UFID) also makes system to search and manage the feature data more easily and efficiently.

Accuracy Assessment of 3D Reconstruction Using LiDAR Data (LiDAR 자료를 이용한 3차원복원 정확도 평가)

  • Chung, Dong-Ki
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.11a
    • /
    • pp.81-104
    • /
    • 2005
  • Accurate 3D models in urban areas are essential for a variety of applications, such as virtual visualization, CIS, and mobile communications. LiDAR(Light Detection and Ranging) is a relatively new technology for directly obtaining 3D points. Because Manual 3D data reconstruction from LiDAR data is very costly and time consuming, many researchs is focused on the automatic extraction of the useful data. In this paper, we classified ground and non-ground points data from LiDAR data by using filtering, and we reconstructed the DTM(Digital Terrain Model) using ground points data, buildings using nonground points data. After the reconstruction, we assessed the accuracy of the DTM and buildings. As a result of, DTM from LiDAR data were 0.16m and 0.59m in high raised apartments areas and low house areas respectively, and buildings were matched with the accuracy of a l/5,000 digital map.

  • PDF

Measurement of Joint-Orientation and Monitoring of Displacement in Tunnel using 3D Laser Scanning System (3차원 레이저 스캐닝 시스템을 이용한 불연속면의 방향성 측정과 터널 변위 모니터링)

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.47-62
    • /
    • 2006
  • More than 70% of Korean Peninsula is consisted of mountains, so that lots of roads, rail-roads and tunnel,which play a pivotal role in the industry activity, are existed along the rock-slope and in the rock-mass. Thus,it is urgent that tegration of management system through the optimum survey and design of rock-slope excavation, proper stabilization method and database of rock-slope. However, conventional methods have shortcoming with the economy of survey time and human resources, and the overcome of difficulties of approach to the in-situ rock-slope. To overcome the limitation of conventional method, this paper proposed the development of remote measurement system using Terrestrial Laser Scanning System. The method using Terrestrial 3D Laser Scanning System, which can get 3D spatial information on the rock-slope and2)Dept. Geosystem Engineering, Kangwon National University, Korea tunnel, has an advantage of reduction of measurement time and the overcome of difficulties of approach to the in-situ rock-slope/dam/tunnel. In the case of rock-slope, through the analysis of 3D modeling of point-cloud by Terrestrial Laser Scanning System, orientation of discontinuity, roughness of joint surface, failure shape and volume were successively achieved. in the case of tunnel face, through reverse-engineering, monitoring of displacement was possible.

  • PDF

Modelling of a Spatial Distribution of the Species Richness of Fishes, Plants, and Birds Using Environmental Factors on a Wide-Ranging Scale1 - Focusing on the Major Drainage Systems in Japan - (광역스케일의 환경 인자를 이용한 어류, 식물, 조류 종수의 공간적 분포에 대한 모델링 - 일본의 주요수계를 중심으로 -)

  • Han, Mi-Deok;Lee, Gi-Bae
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.4
    • /
    • pp.347-355
    • /
    • 2008
  • This study analyzed and modeled the relationships between the species richness of fish, plant, and bird and environmental factors such as climatic and geographical variables based on data collected from 109 major drainage systems in Japan from 1990 until 2005. As a result, the most parts of the distributions of the fish, plant, and bird species richness were clarified by the average annual atmospheric temperature, dimension of drainage areas, and annual rainfall, respectively. In addition, this study predicted the value of each organism species distributed in national drainage areas in Japan using GAMs(Generalized Additive Models) for each organism model created by environmental factors on a wide-ranging scale, and also mapped out the value. Mapping out the predicted value could make it easier for its managers to newly set up the areas needing to be protected to obtain diversity of the organism species and to assess their availability of conservation for bio-diversity.

Application Technique of Spatial Information for Disaster Areas Forecast (재해지역 예측에서의 공간정보의 활용 기법 연구개발)

  • Yeon, sang-ho;Kwon, kee-wook;Min, kwan-sik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.277-280
    • /
    • 2010
  • The prevention of disasters is important to prepare in advance through analysis and an estimate. But for all the efforts of the government to stave off disasters, the damage out of a guerilla localized heavy rain caused the global warming, a landslide and inundation is growing. To prevent these damages, the basic data and system through systematic research and analysis should be set up. But it is true that collecting of the basic data and the system for preventing disasters are either constructing or insufficient so far. In this research, by using topography spatial data including LiDAR data including the aerial photo and digital maps, and etc. the factor of a disaster, the disaster risk element was extracted. Moreover, the disaster region about the disaster generation available region was evaluated in advance using the easy disaster analysis of current situation photo map which made with the grid analysis method and weighted value estimate technique.

  • PDF

Intercomparison of Satellite-based Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) Gridded Dataset and Rain Gauge Data over Korea (Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)와 한반도 지상관측 강수량 자료의 비교 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Taegon;Hong, Eun-Mi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.197-201
    • /
    • 2018
  • 인공위성 기반의 원격탐사자료는 홍수, 가뭄 등 자연재해에 대한 모니터링 및 예측에 활용되어 왔으며, 특히 인공위성을 이용한 광역적 강수량 추정 자료는 지형적 제약을 받는 지상관측자료와 비교하여 시공간적으로 연속적이고 균질한 강수량 자료 취득이 가능하다는 장점이 있다. 우리나라의 경우 상대적으로 조밀한 지상관측망이 구축되어 있어 공간적으로 상세한 강수량 정보를 생산할 수 있는 여건을 갖추고 있지만, 북한 지역의 경우 기상, 수문, 통계자료에 관한 자료의 접근 및 품질의 제한성으로 인해 미계측 지역에 대한 강수량의 추정에 한계가 있다. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) 데이터는 1999년부터 미국국제개발처 (U.S. Agency for International Development, USAID), 미국항공우주국 (National Aeronautics and Space Administration, NASA), 미국해양대기청 (National Oceanic and Atmospheric Administration, NOAA)의 지원으로 개발된 전지구 강우데이터 자료이다. CHIRPS는 1981년부터 현재까지 전지구 강우자료를 0.05도 격자 해상도로 제공하고 있으며, 강수량의 추세 분석 및 가뭄 모니터링을 위해 활용되고 있다. 본 연구에서는 CHG (Climate Hazards Group)에서 제공하고 있는 인공위성을 이용한 광역적 강수량 추정 자료인 CHIRPS와 남한 및 북한의 지상관측 강수량 자료와의 비교를 통해 위성으로부터 유도된 격자 강수량자료의 정확도 및 지역적인 강수추정의 불확실성을 평가하고, 수자원 및 재해 분야 이용 가능성을 검토하고자 한다.

  • PDF

Development of a Prototype for GIS-based Flood Risk Map Management System (GIS를 이용한 홍수위험지도 관리시스템 프로토타입 개발에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Chun-Joo;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.359-366
    • /
    • 2002
  • The damages from the natural disasters, especially from the floods, have been increasing. Therefore, it is imperative to establish a BMP to diminish the damages from the floods and to enhance the welfare of the nation. Developed countries have been generating and utilizing flood risk maps to raise the alertness of the residents, and thereby achieving efficient flood management. The major objectives of this research were to develop a prototype management system for flood risk map to forecast the boundaries oi the inundation and to plot them through the integration of geographic and hydrologic database. For more efficient system development, the user requirement analysis was made. The GIS database design was done based on the results from the research work of river information standardization. A GIS database for the study area was built by using topographic information to support the hydrologic modeling. The developed prototype include several modules; river information edition module, map plotting module, and hydrologic modeling support module. Each module enabled the user to edit graphic and attribute data, to analyze and to represent the modeling results visually. Subjects such as utilization of the system and suggestions for future development were discussed.

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.

Development of a Feature Catalogue for Marine Geographic Information (해양 지리정보 피쳐 카탈로그 작성에 관한 연구)

  • Hong, Sang-Ki;Yun, Suk-Bum
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.101-117
    • /
    • 2004
  • Standards are essential to facilitate the efficient use of GIS data. International Standards such as ISO TC211's 19100 series and various technical specifications from OpenGIS Consortium are some of the examples of efforts to maintain the interoperability among GIS applications. Marine GIS is no exception to this rule and in this context. developing standards for marine GIS is also in urgent needs. Using the same meaning and definition for the features commonly found in marine GIS applications is one of the ways to increase the interoperability among systems. One of the key requirements for maintaining the standard meanings for features is to build a common feature catalogue. This paper examines the concept of feature catalogue and describe the ways in which the feature catalogue can be organized. To identify the common features found in various marine GIS applications, a comprehensive search has been made to collect and analyze the features used in various applications. To maintain the interoperability with the National GIS (NGIS) system, the features used in various NGIS applications have been analyzed as well. The result of these analyses are used to create a comprehensive list of common features for marine GIS. This paper then explains the common feature catalogue for marine GIS and the provides the appropriate classification and coding systems for the common features. In addition, a registration tool for registering the common features into the standard registry has been developed in this study. This Web-based tool can be used to input features into the feature catalogue by various applications and also to maintain a standard-compliant feature catalogue by standard agencies.

  • PDF