• Title/Summary/Keyword: 지하 불균질성

Search Result 56, Processing Time 0.034 seconds

지하투과레이다(GPR)를 활용한 천부 충적 대수층 퇴적상 연구

  • 김형수;이철우;백건하
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.144-147
    • /
    • 2002
  • 효과적인 국내 충적층 지하수의 이용을 위해서는, 충적 대수층의 내부 구조를 정밀하게 평가하여야 한다. 특히, 강변여과, 인공 침투지 등의 적극적인 충적 대수층의 활용을 위해서는 충적 대수층의 퇴적 환경에 대한 이해가 요구된다. 국내 충적층의 대부분은 하천 둔치 주변에서 하도의 수평 이동에 의해 형성된 경사 지층으로, 니질 박층이 협재하므로 내부의 분균일성에 의해 인접한 취수 공간에도 지하수체의 이동 특성 및 화학적 특성이 달라질 수 있다. 본 연구는 이러한 불균질성을 박히기 위해 지하투과레이다(GPR)를 이용하여 부여 군수리 지역의 천부 충적층에 대한 퇴적학적 분석을 시도하였다. 군수리 지역은 크게 상하 두 개의 충적층으로 구분되며, 상부 수평층은 범람에 의해 형성된 것으로 수직 불균질성이 크고 수평 불균질성은 낮다. 하부 경사층은 수평, 수직 불균질성이 모두 크다. 특히 하부 경사층내에 발달한 하도곡은 인접한 충적층과 분리되어 이 층내의 지하수체 이동은 제한적일 것이고 수질 특성 또한 크게 다를 것으로 판단된다. 본 연구는 충적 대수층에 대한 물리 화학적 특성의 정확한 해석을 위해서 퇴적학적 해석이 선행되어야 함을 시사한다.

  • PDF

계면활성제를 이용한 불균질 매질에서의 유기오염물(NAPL)의 정화효율에 관한 실험

  • 서형기;이민희;정상용
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.176-179
    • /
    • 2001
  • 비 수용성 유기오염물(NAPL; non-aqueous phase liquid)로 오염된 불균질 토양을 계면활 성제를 이용하여 정화할 경우 효율성을 알아보기 위해 칼럼 및 박스 실험을 실시하였다. 불 균질한 지하 내부구조는 정화효과에 커다란 영향을 끼치는 것으로 알려져 있으나 이에 대한 연구는 매우 미비한 형편이다. 2차원 불균질 분포를 잘 나타내주는 박스실험을 통하여 실제 지하매질에 가까운 조건에서 실험을 실시하였다. PCE(tetrachloroethylene)와 xylene이 NAPL로 올리에마이드(01eamide)가 비이온-계면활성제로 이용되었으며, 1%용액과 증류수를 주입하여 NAPL을 세정하였고 가스크로마토그래피를 이용하여 NAPL의 농도를 분석하였다. 계면활성제를 주입할 경우가 증류수를 주입할 때보다 최대유출농도가 약 200배 정도가 높게 나타났으며 빠른 시간 내에 대부분의 NAPL이 정화되었다. 본 실험을 통하여, 불균질 매질에서의 계면활성제를 이용한 토양세정방법의 효율성이 정량화 되었으며, 계면활성제를 이용한 채수주입법의 현장 적용가능성을 확인하였다.

  • PDF

Delineation of internal heterogeneities of Geum River point bar deposits in Buyeo area using GPR Data (지하 투과 레이다 조사를 통한 부여 지역 금강변의 충적 대수층 내부 불균질성 파악)

  • Rhee, Chul-Woo;Kim, Hyoung-Soo;Lee, Kyung-Joo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.337-344
    • /
    • 2002
  • The alluvial deposits along meandering rivers can be used as an artificial aquifer for infiltration of river waters. Internal heterogeneity of the alluvial deposits is a prerequisite information for the development of alluvial groundwater because vortical and lateral movement of alluvial ground water depends on the internal heterogeneity The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey, GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units: the lower inclined heterogeneous strata and the upper horizontally stratified strata. The upper unit is largely indicative of vertical accumulation by overbank floods within a floodplain, whereas the lower one represents typical point bar deposits formed by lateral accretion. The stratigraphic variation in the heterogeneity shows that GPR survey is a useful and necessary investigation method for the development of alluvial ground water.

  • PDF

Simulations of the Flow and Distribution of LNAPL in Heterogeneous Porous Media under Water Table Fluctuation Condition (불균질한 다공성 매질에서의 지하수위 변동을 고려한 저밀도 비수용성유체(LNAPL)의 흐름 모의)

  • 천정용;이진용;이강근
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.51-65
    • /
    • 2003
  • A series of numerical simulations were carried out using STOMP( Subsurface Transport over Multiple Phase) simulator. The flow and distribution of LNAPL were analyzed in homogeneous fine and coarse sand. Vertical movement of LNAPL is faster in the coarser sand. But the total volume of LNAPL retained in the unsaturated zone is larger in the finer sand. A fine layer in the coarse sand domain is also simulated. The results showed that the retained LNAPL volume and shape are highly influenced by the Position of the fine layer. Flow and distributions of LNAPL were simulated when there were heterogeneous lenses in the sand domain. Water table fluctuation was also considered. In these cases, it was found that the heterogeneous lens was a barrier to LNAPL flow, and water table fluctuation stimulated the downward movement of retained LNAPL. The LNAPL flow and distribution observed in these numerical experiments show that in the subsurface environment, the behaviors of LNAPL highly depend on heterogeneities of unsaturated zone and the dynamic hydrogeologic condition such as water table fluctuation. These results can explain some of the complexity of LNAPL flow and distribution Patterns in LNAPL contaminated field sites.

Influence of Rock Inhomogeneity on the Static Tensile Strength of Rock (암석의 정적 인장강도에 미치는 불균질성의 영향)

  • Cho, Sang-Ho;Yang, Hyung-Sik;Katsuhiko Kaneko
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • The fracture processes under static tensile loading were simulated using a proposed numerical simulation method, based on finite element method and fracture mechanism, and analyzed to verify an influence of rock inhomogeneity on static tensile strength. Static tensile strengths for the specimen models with different spatial microscopic tensile strength when m=5 and m=50 were estimated. These analyses revealed that the static tensile strength becomes closer to the mean microscopic tensile strength at a higher uniformity coefficient and the scatter of the strength data decreases in increasing the uniformity coefficients. Therefore, it could be concluded that rock inhomogeneity has an effect on static tensile strength.

Influence of the Rock Mass Inhomogeneity Caused by Layer Geometry on the Regional Stress Field (지층암반의 불균질성이 3차원 광역응력장에 미치는 영향)

  • 조상호;중촌규태;천기요;양형식;좌등임기;중간무웅;금자승비고
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.142-153
    • /
    • 2004
  • To investigate the influence of the rock mass inhomogeneity caused by layer geometry on the regional stress distribution the cuboid models considering a homogenous rock mass, inhomogeneous rock mass with plane layers and with uneven layers were analyzed and discussed. It was confirmed that the structure and existence of layers in rock mass affected the regional stress distribution. An approach based on an inverse analysis of the measured local stresses and the 3D finite element analysis was suggested, and used to estimate the regional stress field of the homogeneous and inhomogeneous models, which consist of the surface geometry of ground and both the surface and layer geometry respectively. Additionally, the approach of the regional stress considering the layer geometry in the rock mass was verified to estimate the regional stress field for a site.

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

A Study on Numerical Technique to Enhance In-Situ Applicability and to Overcome Uncertainty in Geo-Material Properties (현장 적용성 향상 및 지반재료 물성의 불확실성 극복을 위한 수치해석법 개발 기초연구)

  • Kim, Hyung-Mok;Synn, Joong-Ho;Inoue, Junya
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • Material properties of geomaterials are usually heterogeneous. And the limitted number of investigation for the subsurface material properties in terms of boreholes are not sufficient enough for identifying the heterogeneity. In most civil engineering work, pre-investigation results can be different from those by in-situ inspection during the construction work. With these points of view, a new analysis concept aiming to evaluate the uncertainty resulted from the heterogeneity of the geomaterial properties as well as to enhance a construction workability and design qualify by a prompt feedback of in-situ conditions was proposed. It was accomplished by linking the Element Free analysis and pre-developed stochastic methods represented by Karhunen-Loeve expansion. Simple ID problem was solved by the developed method, and its validity as well as the characteristic results by different stochastic methods were clarified.

Development of Multiphase Flow Simulator Using the Fractional Flow Based Approach for Wettability Dependent NAPL Migration (친수성에 의존하는 소수성 액체의 거동을 위한 분율 유동 접근 방식을 이용한 다상 유동 수치 모델링 개발)

  • Suk, Hee-Jun;Yeo, In-Wook;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.161-170
    • /
    • 2011
  • The multiphase flow simulator, CHEMPS, was developed based on the fractional flow approach reported in the petroleum engineering literature considering fully three phase flow in physically and chemically heterogeneous media. It is a extension of MPS developed by Suk and Yeh (2008) to include the effect of wettability on the migration of NAPL. The fractional flow approach employs water, total liquid saturation and total pressure as the primary variables. Most existing models are limited to two-phase flow and specific boundary conditions when considering physically heterogeneous media. In addition, these models focused mainly on the water-wet media. However, in a real system, variations in wettability between water-wet and oil-wet media often occur. Furthermore, the wetting of porous media by oil can be heterogeneous, or fractional, rather than uniform due to the heterogeneous nature of the subsurface media and the factors that affect the wettability. Therefore, in this study, the chemically heterogeneous media considering fractional wettability as well as physically heterogeneous media were simulated using CHEMPS. In addition, the general boundary conditions were considered to be a combination of two types of boundaries of individual phases, flux-type and Dirichlet type boundaries.