• Title/Summary/Keyword: 지하수환경

Search Result 4,216, Processing Time 0.033 seconds

A development of the ground settlement evaluation chart on tunnel excavation (터널굴착에 따른 지반침하 예측을 위한 침하량 평가도표 개발)

  • Park, Chi Myeon;You, Kwang-Ho;Lee, Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1105-1123
    • /
    • 2018
  • The main risk factors of tunnel excavation through urban areas are ground settlement and surface sink which caused by ground conditions, excavation method, groundwater condition, excavation length, support method, etc. In the process of ground settlement assessment, the numerical analysis should be conducted considering the displacement and stress due to tunnel excavation. Therefore a technique that can simplify such process and easily evaluate the influence of tunnel excavation is needed. This study focused on the tunnelling-induced ground settlement which is main consideration of underground safety impact assessment. The parametric numerical analyses were performed considering such parameters as ground conditions, tunnel depth, and lateral distance from tunnel center line, etc. A simplified ground settlement evaluation chart was suggested by analyzing tendency of ground subsidence, lateral influence area and character by depth. The applicability of the suggested settlement evaluation chart was verified by comparative numerical analysis of settlement characteristics.

Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method (기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가)

  • Yoon, Seok;Bang, Hyun-Tae;Kim, Geon-Young;Jeon, Haemin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.

Pre-grouting for CHI of EPB shield TBM in difficult grounds: a case study of Daegok-Sosa railway tunnel (복합지반 EPB TBM 커터교체를 위한 그라우팅 수행 사례)

  • Kang, Sung-Wook;Chang, Jaehoon;Lee, Jae-Won;Kim, Dae-Young;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.281-302
    • /
    • 2021
  • Railway projects have been consistently increasing in Korea. In relation to this trend, the mechanized tunneling using Tunnel Boring Machine (TBM) is preferably applied for mining urban areas and passing under rivers. The TBM tunneling under difficult grounds like mixed faces with high water pressure could require ground improvements for stable TBM advance or safe cutter head intervention (CHI). In this study, pre-grouting works for CHI in Daegok-Sosa railway project are presented in terms of the grouting zone design, the executions and the results, the lessons learned from the experience. It should be mentioned that the grouting from inside TBM was carried out several times and turned out to be inefficient in the project. Therefore, grouting experiences from the surface are highlighted in this study. Jet grouting was implemented on CHI points on land, while permeation grouting off shore in the Han River, which mostly allow to access the cutter head of TBM in free air with stable faces. The results of CHI works have been analyzed and the lesson learned are suggested.

Research Trends in Induced Polarization Exploration in Korea (국내 유도분극 탐사의 연구동향)

  • Park, Samgyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Induced polarization (IP) was first published in a Korean academic journal in 1973, and it was soon applied to coal and metal ore exploration. Then, in universities and research institutes, IP modeling studies using the finite element approach and experimental studies on IP responses for artificial samples were conducted. In the mid-1980s, the spectral IP (SIP) measurement module was introduced to Korea, and physical scale modeling and inversion approaches were developed. Due to the decline of the mineral resource industry, this method was not actively applied. However, the SIP method was not applied In the 1990s, IP exploration was applied in the investigation of hydrothermal deposits of sulfide minerals and bentonite mineralization zones, as well as to areas where the groundwater was contaminated by intruding seawater. In the 2000s, three-dimensional inversion of the IP approach was developed, and high-precision geophysical exploration was required to secure domestic and overseas mineral resources, so SIP experiments on rock samples and approaches for field exploration were developed. The SIP approach was proven useful for the exploration of metal deposits containing sulfide minerals by applying it to explore the mineralization zone of gold-silver deposits in the Haenam region. The IP method is considered to be effective in exploring critical minerals (lithium, cobalt, and nickel) in high-tech industries. It also is expected to be useful for environmental and geotechnical investigations.

The Effect of Rainfall on the Stability of Mudstone Slope in Consideration of Collapse Record (이암 절취사면의 붕괴이력을 고려한 강우침투에 따른 안정성 분석)

  • Jeon, Byeong-Chu;Lee, Su-Gon;Kim, Young-Muk;Chung, Sung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • At the mudstone slope located on the roadside of the Seokri area in Donghae-myeon, Pohang, Gyeongsangbuk-do, this study was performed to analyze the effects of rainfall on the stability of slope through seepage analysis according to the precipitation type of the mudstone slope, referring to the actual case of slope failure. For this, precise geological survey, geophysical exploration and drilling survey for the slope where the failure occurred were performed and followed by analysis of detailed soil layer. For the section where failure surface located, the durability reduction of rocks was measured through slaking/swelling tests and the permeability was measured through in-situ permeability tests for each soil layer. In addition, the change of strength parameter and process of instability were analyzed by back analysis, using Talren 97 and Slope/W programs, in the slope. By applying different precipitation conditions to the geographical conditions of the slope that had actual failure records, the slope stability was analyzed by seepage analysis according to duration of rainfall and rise of groundwater level resulting from the flow of rainfall caused by development of geological structures and the slope surface condition.

Study on Moye's Method for Analysis of Constant-Head Tests Conducted in Crystalline Rock (결정질 암반에서 Moye 방법을 이용한 정압시험의 해석에 대한 고찰)

  • Kyung-Woo Park;Byeong-Hak Park;Sung-Hoon Ji;Kang-Kun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.519-530
    • /
    • 2023
  • Moye's analytical solution was examined as a method for constant-head tests under steady-state conditions, and results were compared with transient-state analyses in in situ hydraulic tests. The sensitivity of hydraulic conductivities calculated using Moye's method increased with the length of the test section, which should be as large as possible under test conditions. Particularly in low-permeability media with less than 10-8 m/sec of hydraulic conductivity, hydraulic conductivity is lower than that under transient-state conditions and can be recalculated by adjusting the boundary between radial and spherical flow assumed in Moye's equation. Constant-head tests performed in the research borehole at the KAERI Underground Research Tunnel (KURT) indicated that transmissivities derived from the constant-head withdrawal test under transient-state conditions in low-permeability media were higher than those derived from steady-state tests, likely because the groundwater flow boundary was smaller than the "half of the test-section length"assumed by Moye's equation. When interpreting constant-head test results for crystalline rock, the hydrogeological properties of the medium may be better understood by considering assumed conditions accompanying analysis of the steady-state condition and comparing them with results for the transient-state analysis, rather than simply assuming properties based on steady-state analyses.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

An Epidemiological Investigation on an Outbreak of Shigellosis in a Special School for Handicapped in Yeongcheon-si and in a Rehabilitation Facility in Gyeongsan-si, Korea, 2008 (2008년 영천시 지적장애인 학교와 경산시 재활원에서 발생한 세균성이질에 관한 역학조사)

  • Lee, Hyun-Dong;Lee, Soon-Ok;Lim, Hyun-Sul
    • Journal of agricultural medicine and community health
    • /
    • v.34 no.1
    • /
    • pp.24-33
    • /
    • 2009
  • Objectives: In September 2008, an outbreak of diarrhea occurred among students attending Y school in Yeongcheon-si. Shigella sonnei was cultured from some of the rectal swabs. An epidemiological investigation was carried out to determine the source of the infection and the mode of transmission of the shigellosis outbreak. Methods: The index case lived in the D rehabilitation facility in Gyeongsan-si and an additional epidemiological investigation was carried out there. The cases could not be questioned due to their mental handicaps. The teachers were interviewed instead. A patient case was defined as a resident with diarrhea more than one time a day from September 18 to September 26, 2008 or a resident with confirmed Shigella sonnei at the Y school or the D rehabilitation facility. Results: The attack rate was 1.2% (8 persons) among 659 persons in the Y school and D rehabilitation facility. Five persons were microbiologically confirmed to have the infection and three persons were diagnosed on the basis of symptoms. Shigella sonnei was cultured from five of the 659 rectal swabs. However, 80 environmental specimens including drinking water, preserved foods, and cooking utensils were negative. All eight patients were Y school students and had been living in group boarding and lodging. Six of them lived in the D rehabilitation facility and two lived in the dormitory at the Y school. Five cases showed pulsed-field gel electrophoresis patterns that were identical for Shigella sonnei. Conclusions: The results of this study showed that the infection source of the shigellosis outbreak, in the two places, were identical. It is likely that the infections initially spread from a teacher or volunteer and then among the students.

Mechanisms of Immobilization and Leaching Characteristics of Arsenic in the Waste Rocks and Tailings of the Abandoned Mine Areas (폐광산 지역 폐광석 및 광미에서 비소의 고정 메커니즘과 용출특성)

  • Kang Min-Mu;Lee Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.499-512
    • /
    • 2005
  • EPMA determined that Fe(Mn)-(oxy)hydroxides and well-crystallized Fe-(oxy)hydroxides and could contain a small amount of As $(0.3-11.0\;wt.\%\;and\;2.1-7.4\;wt.\%\;respectively)$. Amorphous crystalline Fe-(oxy) hydroxide assemblages were identified as the richest in As with $28-36\;wt.\%$. On the ternary $As_2O_5-SO_3-Fe_2O_3$ diagram, these materials were interpreted here as 'scorodite-like'. Dissolved As was attenuated by the adsorption on Fe-(oxy) hydroxides and Fe(Mn)-(oxy) hydroxides and/or the formation of an amorphous Fe-As phase (maybe scorodite: $FeAsO_4\cdot2H_2O$). Leaching tests were performed in order to find out leaching characteristics of As and Fe under acidic conditions. At the initial pHs 3 and 5, As contents dissolved from tailings of the cheongyang mine significantly increased after 7 days due to the oxidation of As-bearing secondary minerals (up to ca. $2.4\%$ of total), while As of Seobo mine-tailing samples was rarely released (ca. $0.0-0.1\%$ of total). Dissolution experiments at an initial pH 1 liberated a higher amount of As (ca. $1.1-4.2\%$ of total for Seobo tailings, $1.5-14.4\%$ of total for Cheongyang tailings). In addition, good correlation between As and Fe in leached solutions with tailings was observed. The kinetic problems could be the important factor which leads to increasing concentrations of As in the runoff water. Release of As from Cheongyang tailings can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment, while precipitation of secondary minerals and the adsorption of As are efficient mechanisms for decreasing the mobilities of As in the surface environment of Seobo mine area.

Designing and Applicability of Soil Pollution Indices for Estimating Quality of Soil Polluted with Heavy Metals and Arsenic (중금속 및 비소오염 토양질 평가를 위한 토양오염지표의 고안과 응용 가능성)

  • 박용하
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • Soil pollution indices (SPI) were designed for estimating quality of soil polluted with arsenic and heavy metals. Applying the quality reference value of soil based on its multifunctional purpose was a key step. For considereing multifunctions of soil, soil was classified into 4 groups-agricultural land, residential area, recreational area, factorial site. Then, each concentration of arsenic and each of five heavy metals (Cd, Cu, Hg, Pb, Zn) in soils grouped was transformed to a mathematical value based on the soil quality reference value which may stand for ecological impact. Soil pollution score (SPS) was the addition of the 6 values transformed, and the range of the SPS was divided into 4 Soil Pollution Classes (SPC). The SPC 1, 2, 3, and 4 were SPS <100, SPS 100-200, SPS >200-300, and SPS >300, repectively. SPS and SPC were evaluated with the results of the data from employing the Soil Network of 1994. Based on the soil quality reference values, SPS and SPC of the Soil Network's data were transformed and classified, respectively. Then, SPS and SPC were compared with arsenic and the 5 heavy metal contents of their reference values resulted from the Soil Network's. From this method, soil quality of most of the Soil Network area was estimated to be healthy. However, ca. 3.0~4.0% of the Soil Network area was determined in a range of slightly and heavily polluted. As the mean value of SPS of the Soil Network's was 66.2 which indicates most of soil evaluated was healthy. When the SPSs of the data were divided into 4 groups of SPC, Class 1 (Good quality of soil), Class 2 (Need to be checked area 1), Class 3 (Need to be checked area 2) and Class 4 (Polluted area) were 87.0, 9.4, 2.4, 1.2%, respectively. Using SPI were comparable to those of heavy metal contents in soils, and would be comprehenve to determine the status of soil qulity. Methodology of the developing SPI would be applicable to the other soil pollutants such as organic and inorganics than arsenic and 5 heavy metals used here.

  • PDF