• Title/Summary/Keyword: 지하수면

Search Result 119, Processing Time 0.062 seconds

Assessment of Water Circulation and Hydro-characteristics with LID techniques in urbanized areas (도시지역에 적용된 LID 기법의 강우시 수문특성 및 물순환 평가)

  • Choi, Hyeseon;Hong, Jungsun;Jeon, Minsu;Geronimo, Franz Kevin;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • High impervious surfaces increase the surface runoff during rainfall and reduces the underground infiltration thereby leading to water cycle distortion. The distortion of water cycle causes various urban environmental problems such as urban flooding, drought, water pollutant due to non-point pollution runoff, and water ecosystem damage. Climate change intensified seasonal biases in urban rainfall and affected urban microclimate, thereby increasing the intensity and frequency of urban floods and droughts. Low impact development(LID) technology has been applied to various purposes as a technique to reduce urban environmental problems caused by water by restoring the natural water cycle in the city. This study evaluated the contribution of hydrologic characteristics and water cycle recovery after LID application using long-term monitoring results of various LID technology applied in urban areas. Based on the results, the high retention and infiltration rate of the LID facility was found to contribute significantly to peak flow reduction and runoff delay during rainfall. The average runoff reduction effect was more than 60% at the LID facility. The surface area of the LID facility area ratio(SA/CA) was evaluated as an important factor affecting peak flow reduction and runoff delay effect.

Constructed Wetlands in Treating Domestic and Industrial Wastewater in India: A Review (인도의 가정 및 산업 폐수 처리를 위한 인공습지: 총론)

  • Farheen, K.S.;Reyes, N.J.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.242-251
    • /
    • 2021
  • Surface water pollution is a serious environmental problem in developing countries, like India, due to the unregulated discharge of untreated wastewater. To overcome this, the constructed wetlands (CWs) have been proven to be an efficient technology for wastewater treatment. In this study, different existing and experimental facilities were reviewed to be able to determine the current status of constructed wetlands in India. Based on the collected data from published literature, industrial wastewater contained the highest average chemical oxygen demand (COD), biochemical oxygen demand (BOD). In terms of total nitrogen (TN), Total phosphorous (TP), the lowest concentration was found on domestic wastewater. Vertical flow constructed wetlands (VFCW) and Horizontal flow constructed wetland (HFCW) were more effective in removing TSS, BOD, TP in domestic and industrial wastewater, whereas hybrid constructed wetlands (HCW) showed the highest removal for COD. The use of constructed wetlands as advanced wastewater treatment facilities in India yielded better water quality. The treatment of wastewater using constructed wetlands also enabled further reuse of wastewater for irrigation and other agricultural purposes. Overall, this study can be beneficial in evaluating and promoting the use of constructed wetlands in India.

Origin of Manganese Carbonates in the Janggun Mine, South Korea (장군광산산(將軍鑛山産) 망간광물의 성인(成因)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.109-122
    • /
    • 1986
  • Mn-Pb-Zn-Ag deposits of the Janggun mine are hosted in the Cambro-Ordovician Janggun limestone mostly along the contacts of the Jurassic Chunyang granite. The deposits are represented by several ore pipes and steeply dipping lenticular bodies consisting of lower Pb-Zn-Ag sulfide ores and upper manganese carbonate and oxide ores. The former consists mainly of arsenic, antimony, silver, manganese, and tin-bearing sulfides, whereas the latter are characterized by hypogene rhodochrosite, and superficial manganese oxides including todorokite, nsutite, pyrolusite, cryptomelane, birnesite and janggunite. Origin of the upper manganese ore deposits has been a controversial subject among geologists for this mine: hydrothermal metasomatic vs. syngenetic sedimentary origin. Syngenetic advocators have proposed a new sedimentary rock, rhodochrostone, which is composed mainly of rhodochrosite in mineralogy. In the present study, carbon, oxygen and sulfur isotopic compositions were analayzed obtaining results as follows: Rhodochrosite minerals, (Mn, Ca, Mg, Fe) $CO_3$, from hydrothermal veins, massive sulfide ores and replacement ores in dolomitic limestone range in isotopic value from -4.2 to -6.3‰ in ${\delta}^{13}C$(PDB) and +7.6 to +12.9‰ in ${\delta}^{18}O$(SMOW) with a mean value of -5.3‰ in ${\delta}^{13}C$ and +10.7‰ in ${\delta}^{18}O$. The rhodochrosite bearing limestone and dolomitic limestone show average isotopic values of -1.5‰ in ${\delta}^{13}C$ and +17.5‰ in ${\delta}^{18}O$, which differ from those of the rhodochrosite mentioned above. This implies that the carbon and oxygen in ore fluids and host limestone were not derived from an identical source. ${\delta}^{34}S$ values of sulfide minerals exhibit a narrow range, +2.0 to +5.0‰ and isotopic temperature appeared to be about $288{\sim}343^{\circ}C$. Calculated initial isotopic values of rhodochrosite minerals, ${\delta}^{18}O_{H_2O}=+6.6$ to +10.6‰ and ${\delta}^{13}C_{CO_2}=-4.0$ to -5.1 ‰, strongly suggest that carbonate waters should be deep seated in origin. Isotopic data of manganese oxide ores derived from hypogene rhodochrosites suggest that the oxygen of the limestone host rock rather than those of meteoric waters contribute to form manganese oxide ores above the water table.

  • PDF

A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea (농촌지역 지하수의 오염 예측 방법 개선방안 연구: 충남 금산 지역에의 적용)

  • Cheong, Beom-Keun;Chae, Gi-Tak;Koh, Dong-Chan;Ko, Kyung-Seok;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 2008
  • Groundwater pollution prediction methods have been developed to plan the sustainable groundwater usage and protection from potential pollution in many countries. DRASTIC established by US EPA is the most widely used groundwater vulnerability mapping method. However, the DRASTIC showed limitation in predicting the groundwater contamination because the DRASTIC method is designed to embrace only hydrogeologic factors. Therefore, in this study, three different methods were applied to improve a groundwater pollution prediction method: US EPA DRASTIC, Modified-DRASTIC suggested by Panagopoulos et al. (2006), and LSDG (Land use, Soil drainage, Depth to water, Geology) proposed by Rupert (1999). The Modified-DRASTIC is the modified version of the DRASTIC in terms of the rating scales and the weighting coefficients. The rating scales of each factor were calculated by the statistical comparison of nitrate concentrations in each class using the Wilcoxon rank-sum test; while the weighting coefficients were modified by the statistical correlation of each parameter to nitrate concentrations using the Spearman's rho test. The LSDG is a simple rating method using four factors such as Land use, Soil drainage, Depth to water, and Geology. Classes in each factor are compared by the Wilcoxon rank-sum test which gives a different rating to each class if the nitrate concentration in the class is significantly different. A database of nitrate concentrations in groundwaters from 149 wells was built in Keumsan area. Application of three different methods for assessing the groundwater pollution potential resulted that the prediction which was represented by a correlation (r) between each index and nitrate was improved from the EPA DRASTIC (r = 0.058) to the modified rating (r = 0.245), to the modified rating and weights (r = 0.400), and to the LSDG (r = 0.415), respectively. The LSDG seemed appropriate to predict the groundwater pollution in that it contained land use as a factor of the groundwater pollution sources and the rating of each class was defined by a real pollution nitrate concentration.

Oxygen and Hydrogen Isotope Studies of the Hydrothermal Clay Deposits and Surrounded Rocks in the Haenam Area, Southwestern Part of the Korean Peninsula (한국 서남부, 해남지역의 열수 점토광상과 주변암에 대한 산소 및 수소동위원소 연구)

  • Kim, In Joon;Kusakabe, Minoru
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • In the present study, three representative hydrothermal clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were selected for oxygen and hydrogen isotope studies. Oxygen and hydrogen isotopic compositions of quartz, sericite, alunite and kaolin minerals from Seongsan, Ogmaesan, Haenam deposits and surrounded rocks of clay deposits have been measured. The ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite in the Seongsan mine are +8.4 to +11.1‰, +3.6 to 5.4‰, +4.8 to +5.8‰ and + 3.0 to +6.6‰, respectively. In the Ogmaesan mine, the ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite are +8.0 to +13.6‰, +2.8 to +6.7‰, +4.8 to +8.4‰ and +0.9 to +2.4‰, respectively. The ${\delta}^{18}O$ values of the Haenam mine range from +7.9 to +10.1‰ for quartz and from +4.5 to +6.5‰ for sericite. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.0 to + 7.8‰ for the granitic rocks. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.2 to + 10.7‰ for the volcanic rocks. The 8D values of kaolin, sericite and alunite in the Seongsan mine are -78 to -86‰, -71 to -90‰ and -43 to -77‰, respectively. In the Ogmaesan mine, the ${\delta}D$ values of kaolin, sericite and alunite are -73 to -80‰, -74 to -88‰ and -57 to -98‰, respectively. The ${\delta}D$ values of the Haenam mine range from -76 to -85‰ for sericite. The ${\delta}D$ values of the whole-rocks range from -77 to -105‰ for the granitic rocks. The ${\delta}D$ values of the wholerocks range from -76 to -100‰ for the volcanic rocks. The main result obtained oxygen and hydrogen isotope data can lead to the following interpretations on the origin of hydrothermal fluids in the clay deposits: Through the oxygen isotopic study, the formation temperature of the clay deposits was estimated from the coexisting minerals such as quartz-kaolin minerals and -sericite. Formation temperature of the acidic alteration zone is 165 to $280^{\circ}C$ in the Seongsan deposits, 175 to $250^{\circ}C$ in the Ogmaesan deposits and 250 to $350^{\circ}C$ in the Haenam deposits. Three clay deposits has been formed by magmatic water mixed with meteoric water. Furthermore, from this isotopic data, it is clarified that kaolin minerals and alunite are hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced in the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems. Oxidation of the $H_2S$ is thought to be generated when the vapor phase generated by boiling of the deep-seated water under the water table.

  • PDF

Case study on the lake-land combined seismic survey for underground LPG storage construction (LPG 지하저장기지 건설을 위한 수륙혼합 탄성파탐사 사례)

  • Cha Seong-Soo;Park Keun-Pil;Lee Ho-Young;Lee Hee-Il;Kim Ho-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.101-125
    • /
    • 2002
  • A lake seismic survey was carried out to investigate possible geohazards for construction of the underground LPG storage at Namyang Lake. The proposed survey site has a land-lake combined geography and furthermore water depth of the lake is shallow. Therefore, various seismic methods such as marine single channel high resolution seismic reflection survey, sonobuoy refraction survey, land refraction survey and land-lake combined refraction survey were applied. Total survey amounts are 34 line-km of high resolution lake seismic survey, 14 lines of sonobuoy refraction survey, 890 m of land refraction survey and 8 lines of land-lake combined refraction survey. During the reflection survey, there were severe water reverberations from the lake bottom obscured subsurface profiling. These strong multiple events appeared in most of the survey area except the northern and southern area near the embankment where seems to be accumulated mainly mud dominated depositions. The sonobuoy refraction profiles also showed the same Phenomena as those of reflection survey. Meanwhile the results of the land-lake combined refraction survey showed relatively better qualities. However, the land refraction survey did not so due to low velocity soil layer and electrical noise. Summarized results from the lake seismic survey are that acoustic basement with relatively flat pattern appeared 30m below water level and showed three types of bedrock such as fresh, moderately weathered and weathered type. According to the results of the combined refraction survey, a velocity distribution pattern of the lake bottom shows three types of seismic velocity zone such as >4.5 km/s, 4.5-4.0km/s and <4.0km/s. The major fault lineament in the area showed NW-SE trend which was different from the Landsat image interpretation. A drilling was confirmed estimated faults by seismic survey.

  • PDF

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

Analysis of Growth Response by Non - destructive, Continuous Measurement of Fresh Weight in Leaf Lettuce 1. Effect of Nutrient Solution and Light Condition on the Growth of Leaf Lettuce (비파괴 연속 생체중 측정장치의 개발 및 이에 의한 상추의 생장반응 분석 l. 양액의 이온 농도 및 명ㆍ암 처리가 생장에 미치는 영향)

  • 남윤일;채제천
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.50-58
    • /
    • 1995
  • These studies were carried out to develop a system for non -destructive and continuous measurement of fresh weight and to analyse the growth response of leaf lettuce under the different nutrient solution and light condition with this system. The developed measurement system was consisted of four load cells and a microcomputer. The output from the system was highly positive correlation with the plant fresh weight above the surface of the hydroponic solution. The top fresh weight of plant could be measured within the error $\pm$ 1.0g in the range of 0 - 2000g. The top fresh weight of leaf lettuce increased 44 times at 18th day after transferring to the nutrient solution, and the maximum growth rate was observed at 13th day after transferring. The growth rate was 10.7- 29.6% per day during 18 days. Optimum concentration of the nutrient solution for the growth of lettuce was 1.4 - 2.2 mS/cm of EC level. When the light condition was changed from dark to light, the fresh weight was temporarily decreased, but the fresh weight increased under the opposite condition. Top fresh weight of leaf lettuce in the darkness normally increased within 12 hours after darkness treatment, and then slowly increased until 78 hours under continuous dark condition. After that times, the fresh weight began to decrease.

  • PDF

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.