• Title/Summary/Keyword: 지하수면

Search Result 119, Processing Time 0.03 seconds

Evaluation of constructed wetlands' effectiveness based on watershed characteristics and facility size (유역특성 및 시설규모가 인공습지 효율에 미치는 영향 평가)

  • Choe, Hye-Seon;Reyes, Jett;Jeon, Min-Su;Geronimo, Nash Franz Kevin;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.457-457
    • /
    • 2021
  • 인공습지는 자연이 가진 정화기작을 인위적으로 증가시키기 위하여 조성한 자연기반해법에 해당한다. 인공습지는 습지 내 식물, 미생물, 토양 등의 상호기작에 의하여 오염물질이 제거된다. 인공습지의 오염물질저감효율은 시설의 규모와 유량, 유입물질의 부하량 수리학적 부하량, 체류시간 등의 영향을 받게 된다. 일반적으로 인공습지 적정 규모는 유역 및 기상인자의 특성과 조성목적에 고려하여 산정된다. 본 연구는 전국 35개 지역에 설치된 54개 인공습지를 선정하여 모니터링을 수행하였으며, 2011년부터 2018년에 설치된 시설이다. 54개 시설 중 도심지역에 13개, 농업지역 25개, 공업지역 3개, 상업지역 3개, 축산 10개가 설치되어있다. 습지형태는 Cell형 자유수면형 인공습지(Free Water Surface, Cell-FWS), 유로형(Flow) 자유수면형 인공습지(Cell-FWS), Cell과 Flow형이 결합된 Hybrid-FWS, 수직흐름형 인공습지(vertical flow constructed wetland)와 수평지하흐름형 인공습지(vertical flow constructed wetland)가 결합된 HYBIRD 형 습지로 구분된다. 연구결과, 일반적으로 SA/CA 비율이 클수록 오염물질의 저감효율은 증가하는 것으로 나타났다. 오염 물질별 인공습지 규모를 비교할 경우 저감효율 60%에서 인공습지의 규모는 유기물>영양염류>입자상물질 순으로 나타났다. 목표 제거효율 60%에서 SA/CA 비는 BOD에서 약 3.2%, COD에서 2.5%, SS에서 1.9%, TN 2.5%, TP 2.3%로 나타났다. 입자상물질인 SS는 유기물 및 영양염류에 비하여 유역면적 대비 시설면적이 가장 적게 나타났으며, 유기물질 제거에 큰 시설규모가 필요한 것으로 나타났다. 따라서 인공습지 설계시 유역 토지이용 및 강우특성을 고려하여 적정한 수질과 유량모니터링이 필요하며, 이를 토대로 목표 오염물질 선정이 중요한 것으로 나타났다. 또한, 농업지역의 최적화된 인공습지 위치는 임야가 20~30%, 밭이 20% 이하, 논이 10~50%를 포함하는 곳이 적정한 것으로 평가되었다. 도시지역 인공습지는 도시면적이 증가할수록 효율이 크게 변하지 않기에 가용위치가 적정한 위치로 평가된다. 인공습지의 효율은 유역의 세부 토지이용에 크게 의존하는 것으로 평가되었다. 따라서 인공습지 설계시 농업지역에서는 임야, 밭 및 논의 적정면적을 고려하여 인공습지 위치가 결정되어야 하는 것으로 나타났다.

  • PDF

Occurrence and Mineral Characteristics of Au-Ag-Cu-Bi Bearing Quartz Veins in the Estancia de la Virgen area, Guatemala (과테말라 Estancia de la Virgen 지역 금-은-동-비스무스 광화대의 산상과 광물특성)

  • Shin, Eui-Cheol;Kim, Soo-Young;Hong, Sei-Sun;Kim, In-Joon
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.463-472
    • /
    • 1998
  • The survey was carried out in order to delineate the occurrence of ore deposits and the mineralized characteristics in the Estancia de la Virgen area through the 1:2,000 scaled geological mapping and topographic measuring surveys. Gold-silver mineralization is in the fault block developed between the San Agustin Fault and Cabanas Fault. It is associated with ore bearing quartz veins controlled by the fault structure. The contents of Au and Ag range from traces up to 72 g/t and 180 g/t respectively. According to traversing the outcrops, the quartz veins are traced by 0.5 Km trended to north and south. In those extended part, they continue for 1,000 m intermittently. Gold-silver mineralization could be divided into three stages. In the first stage, pyrite, galena, sphalerite, and chalcopyrite were formed with the primary silver and gold associated with galena and copper sulfides respectively. In the second stage, Cu-Bi-Au-Ag bearing sulfides such as chalcocite, covellite, and linarite are formed and usually deposited on the cataclastic fractures of galena and/or chalcopyrite. In the third stage, both the carbonation of galena and sphalerite and the sulphatization of galena, took place in the surface environment. And then primary silver was carried away off and was deposited on galena and/or copper sulfides during oxidation near the water table. Low partitionings of Fe in sphalerite assist that the minerals were formed at the relatively low temperature, which is coincided with previously reported homogenization temperature of fluid inclusions.

  • PDF

Occurrences of Hot Spring and Potential for Epithermal Type Mineralization in Main Ethiopian Rift Valley (주 에티오피아 열곡대 내 온천수의 산출특성 및 천열수형 광상의 부존 잠재성)

  • Moon, Dong-Hyeok;Kim, Eui-Jun;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.267-278
    • /
    • 2013
  • The East African Rift System(EARS) is known to be hosted epithermal Au-Ag deposits, and the best-known example is Main Ethiopian Rift Valley(MER) related to Quaternary bimodal volcanism. Large horst-graben system during rifting provides open space for emplacement of bimodal magmas and flow channel of geothermal fluids. In recent, large hydrothermally altered zones(Shala, Langano, and Allalobeda) and hot spring related to deeply circulating geothermal water have been increasing their importance due to new discoveries in MER and Danakil depression. The hot springs in Shala and Allalobeda occur as boiling pool and geyser on the surface, whereas some areas didn't observe them due to decreasing ground water table. The host rocks are altered to quartz, kaolinite, illite, smectite, and chlorite due to interaction with rising geothermal water. The hot springs in MER are neutral to slightly alkaline pH(7.88~8.83) and mostly classified into $HCO_3{^-}$ type geothermal water. They are strongly depleted in Au, and Ag, but show a higher Se concentration of up to 26.7 ppm. In contrast, siliceous altered rocks around hot springs are strongly enriched in Pb(up to 33 ppm, Shala), Zn(up to 313 ppm, Shala), Cu(up to 53.1 ppm, Demaegona), and Mn(up to 0.18 wt%t, Shala). In conclusion, anomalous Se in hot spring water, Pb, Zn, Cu, and Mn in siliceous altered rocks, and new discoveries in MER have been increasing potential for epithermal gold mineralization.

Two Dimensional Shear Wave Velocity Using the Inversion of Surface Waves (표면파 역산을 이용한 2차원 S파 속도구조에 관한 연구)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.675-682
    • /
    • 2000
  • 25 seismic shot gathers were obtained to study the two dimensional subsurface shear wave velocities in a landfilled area near the Keum river estuary. Borehole(BH#1 and BH#2) tests at two sites were made in the same area. Standard Penetration Tests were also performed at the same time. The 2-D shear wave velocity structure resulted from the inversion of the seismic data shows that the subsurface of the studied area consists of the upper 1${\sim}$3 meter thick layer(200 m/sec${\sim}$700 m/sec), the middle 5${\sim}$8 m thick low velocity layer(100 m/sec${\sim}$400 m/sec), and the lower layer of 1000m/sec or higher shear wave velocities. The thickness of the low velocity layer decreases from the BH #1 site to the BH #2 site. The depth to the basement also decreases toward the BH #2 site. The examination of the S wave velocity structure, the description of the geologic contents, and the Standard Penetration Test values indicate that the middle layer of low shear wave velocity may be related to the clay content of the layer. On the other hand, the Standard Penetration test values increase with depth, showing no significant relationship with the geologic contents of the subsurface. This study shows that the inversion of surface waves can be effective in the study of the shear wave velocity, especially in the area where low velocity layers can be found. The method of inversion of surface waves also can be used as a viable technique to overcome the limit of the seismic refraction method.

  • PDF

A Physical Model Test on the Behavior of Shield-tunnel Lining According to Drainage Conditions in Weathered Granite Soil (화강풍화토 지반에서 배수조건에 따른 쉴드터널 라이닝의 거동연구를 위한 모형실험)

  • Choi, Gou-Moon;Yune, Chan-Young;Ma, Sang-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.71-82
    • /
    • 2015
  • Recently, due to the expansion of urban infrastructure for the citizen convenience, the shield tunnel construction has increased considering the civil complaints minimization and construction stability. Most shield tunnels are designed based on the assumption of the undrained condition that underground water does not inflow, but they are operated in the field as drained tunnels with drainage facility to drain underground water. Therefore, the drained condition needs to be considered in the shield tunnel design. It is also necessary to consider the weathered granite soil that is widely distributed throughout the country and consequently is encountered in most of construction sites. In this paper, the model test which can control total stress and pore water pressure and simulate the underground tunnel located in the weathered granite soil below ground water level is conducted. Total stress, pore water pressure and an inflow water into an inner pipe were measured using the testing device. Test results showed that the total stress in a drained condition was lower than in an undrained condition because pore water pressure decreased in a drained condition and an inflow water into an inner pipe was proportional to the loading stress in a drained condition. As a result, if a drained condition is considered in the shield tunnel design, the more economical design can be expected because of the stress reduction of the lining.

Review of Nitrous Oxide Emission by Denitrification in Subsurface Soil Environment (심층토에 있어서 탈질화에 의한 $N_2 O$ 방출의 평가)

  • Chung Doug-Young;Jin Hyun-O;Lee Chaang-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.160-164
    • /
    • 1999
  • Subsurface environments, including the intermediate vadose zone and aquifers, may be contributing to increased atmospheric concentrations of $N_2$O. Denitrification appears to be the major source of $N_2$O in the subsurface environment. In the intermediate vadose zone, the level of denitrifying activity is dependent on the soil morphology, particularly stratified layers within the soil profile, which impede water and solute movement and create conditions favorable for denitrification. Movement of organic C from the soil surface appears to support denitrifying activity by providing an energy source and increasing the consumption of $O_2$. Denitrirication and $N_2$O production have been observed in aquifers but appear to be of greatest significance in shallow unconfined aquifers. The lack of organic C, N $O_2$, or anaerobiosis is often a limiting factor for activity but seems to be site specific. The presence of denitrifying bacteria does not appear to be a major limitation, based on published results, but the ubiquity of denitrifiers in subsurface environments needs to be confirmed. The fate of the $N_2$O produced in subsurface environments is unknown. Transport of $N_2$O by up ward diffusion, by outgassing at contacts with surface waters, and by ground water use need to be quantified to determine the contribution to atmospheric $N_2$O. Contamination of subsurface environment with N $O_3$$^{ }$ and organics has the potential for increasing the contribution to atmospheric $N_2$O by enhancing denitrification .

  • PDF

A Study on the Optimum Design of Horizontal Collectors in Floodplain Filtration (홍수터여과에서 집수관의 최적설계 연구)

  • Pi, Seong-Min;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.430-437
    • /
    • 2012
  • In order to obtain information on the design parameters of the horizontal laterals in floodplain filtration, laboratory-scale sand-box experiments were performed where the head distributions on the laterals and the groundwater profiles were measured according to the change in parameters including lateral diameter, hydraulic conductivity of the sand, water level at the well and raw-water supply rate. Measured data were analyzed using a numerical code in order to identify the discharge intensity distribution along the laterals. It was observed from the result that the lowering of the water level at the well had minimal adverse effect on the performance of the floodplain filtration. Results also elucidated that the low conveyance of the laterals to transmit the filtrate was compensated and supplemented by a natural augmentation in horizontal conveyance through the aquifer when the raw-water supply rate exceeded the adequate recovery rate. With this mechanism, the water quality is expected to improve further since the travel distance through the aquifer is amplified. Based on these findings it can be suggested that the diameter of the lateral used in the floodplain filtration may be smaller than those in riverbank/bed filtration. It was also found that the ratio between the head loss occurring in a lateral and the total head loss in the floodplain filtration was proportional to the exit velocities of the laterals, which may be used to design and/or evaluate the lateral in floodplain filtration.

The Analysis of Geothermal Gradient at Icheon Hot Spa Area (이천 온천원보호지구의 지온경사 해석)

  • Lee, Chol-Woo;Moon, Sang-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • Nine wells have been developed for uses of thermal waters at the Icheon hot spa area. Drilling depths of those hot spring wells range from 166 to 294 m and their piezometric heads are located at about 50 m below the surface. Using the differences between the surface and bottom temperatures within all boreholes, we can simply estimate geothermal gradient in this area. Thus, we obtained the highest, lowest and average gradient values as $64^{\circ}C/km$ from SB-2 well, $45^{\circ}C/km$ from SB-1 well and approximately $54.28^{\circ}C/km$, respectively. However, observing the MRD-2 well additionally drilled into the depth of 996 m, we found out that this study area has widely experienced the temperature disturbance due to thermal groundwater penetration through the fracture systems within the depth of 720 m. Unlikely this phenomenon, we can conclude that the groundwater flow below the depth of 720 m does not exist. Therefore, using only those temperature data below the 720 m depth, we can estimate reasonable geo-thermal gradient values as $33^{\circ}C/km$ in this study area. Pumping test shows that outflowing temperature is $36^{\circ}C$ corresponding to the temperature logging data at 720 m depth.

Time-lapse Geophysical Survey Analysis for Field-scale Test bed of Excavation Construction (실규모 굴착 시험장에서의 시간경과 물리탐사 자료 분석)

  • Shin, Dong Keun;Song, Seo Young;Kim, Bitnarae;Yoo, Huieun;Ki, Jung Seck;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.137-151
    • /
    • 2019
  • Geophysical exploration techniques are effective for monitoring changes in the ground condition around the excavation project to prevent subsidence risks during excavation work, therefore, improving analysis techniques is required for applying and supplementing various geophysical exploration technologies. In this study, a field-scale on-site test was conducted to detect possible ground subsidence hazards and areas of relaxation zone that may occur during excavation work and due to underground water level changes. In order to carry out the field test, a real-scale excavation test bed was constructed and the geophysical exploration methods, such as electrical resistivity survey and multi-channel analysis of surface wave (MASW) survey for urban sites condition, have researched for optimal geophysical exploration parameter, design and correlation analysis between the results by reviewing the validity of each individual geophysical exploration and modeling. The results of this study showed the impact of each geophysical exploration on the relaxation zone and, in particular, the location of the underground water surface and the effects of excavation were identified using electrical resistivity survey. Further research on modeling will be required, taking into account the effects of excavation and groundwater.

Leachate Concentration to Groundwater Considering Source Depletion for Risk Assessment in Vadose Zone of Contaminated Sites (오염부지 위해성평가 시 불포화대 오염원 고갈을 고려한 토양유출수 농도 결정)

  • Chang, Sun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.583-592
    • /
    • 2020
  • This study assessed source depletion in the vadose zones of contaminated sites. The possible range of infiltration rate in Korea was statistically analyzed. The results showed a trend of decreasing leachate concentration of 13 pollutants used for risk assessment. Among them, benzene, ethylbenzene, toluene, and xylene showed a lower leachate concentration in groundwater over time due to their low distribution coefficient and also possible biodegradation effects. The average values of the relative concentration could be taken as a default index due to a very small range of uncertainties. In the case of heavy metals, it was shown that the leachate concentration in a pollutant does not decrease over time. Considering the annually different infiltration, a site-specific source-depletion scenario was applied to Cheongju in North Chungcheong Province. The result was expressed as a time series of the relative concentration of the leachate concentration, and this was compared to the trend by averaged Korean infiltration. Finally, an open-source code that used Python was used to help calculate the leachate concentration by this site-specific infiltration scenario.