• Title/Summary/Keyword: 지하매설관

Search Result 124, Processing Time 0.027 seconds

Effects of Freezing a Backfill Material under Undrained Condition on a Buried Pipe (포화 사질토 뒷채움재의 비배수 동결에 의한 매설 강관의 거동 - 실대형 모형실험 연구 -)

  • Kang, Jae-Mo;Lee, Jang-Guen;Kim, Hak-Seung;Lee, Sang-Yoon;Ryu, Byung-Hyun;Cho, Nam-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.39-47
    • /
    • 2014
  • Frost heaving and thawing settlement cause unexpected stress around buried pipelines, which results in deformation and permanent demage. A large scale laboratory test has been performed to observe deformation, stress, and temperature of a buried pipe during atmospheric temperature changes. From the experimental results, the stress concentrated around the buried pipe is inevitable and deformation is caused by the frost heaving. Even though backfill materials are sandy soils which are normally assumed to be non frost susceptible, it is revealed that frost demage can happen due to drainage condition, the level of ground water table, and water content.

Deformation Behavior of Underground Pipe with Controlled Low Strength Materials with Marine Dredged Soil (해양준설토 CLSM을 이용한 지하매설관 변형특성)

  • Lee, Kwan-Ho;Kim, Ju-Deuk;Hyun, Seong-Cheol;Song, Yong-Seon;Lee, Byung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.129-137
    • /
    • 2007
  • It is very urgent to research the proper recycling method of marine dredged soil as construction material for environmental conservation. Couple of developed countries have been lots of related researches on recycling of marine dredged soil for marine environmental conservation. This is highly imperative in our country. A small-scaled model test for underground pipe has been conducted on the use of controlled low strength materials with marine dredged soil. The flexible pipe, which is called PVC, was used. Four different testing materials, such as natural sand, insitu-soil, sand-CLSM with marine dredged soil and insitu-soil CLSM with marine dredged soil, were used. The vertical and lateral displacement of pipe with CLSM is one tenth of common granular materials. Also, the use of CSLM showed lower lateral and vertical pressure than that of common granular materials. The main reason is the effect of cement hardening of CLSM. This could increase of the stiffness of pipe with backfill materials. In this study, the data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM and reduce the deformation and earth pressure on flexible pipe.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

Corrosion Comparison in Pipeline applied to Cathodic Protection and Analysis of Economic Efficiency (전기방식 적용여부에 따른 관로 부식상태 비교 및 경제성 검토)

  • Ko, Young-Hoan;Han, Ho-Yeon;Joung, Yoo-Jin;Lee, En-Chun;Lee, In-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.390-393
    • /
    • 2007
  • 매설관로상의 전기방식에 대한 경제성을 비교하는 자료는 미국 루지에나주에서 실제로 방식/비방식관로를 구성하고 15년간의 대이타를 기준으로 분석한 내용이 있으나, 실제 우리나라의 대부분의 수도관은 도심지지하에 가스관, 지중시설물 등 각종 설비와 함께 매설되어 메탈터치 및 간섭에 의한 집중부식구간이 우려되는 구간이 많을뿐 아니라 이종 관류에 의한 부식구간도 많아 외국의 데이터를 그대로 적용할수 없어 국내의 공신력있는 실험 데이터를 확보하여 구체적인 경제성을 검증하여 투자의 적정성을 확보하는데 이 연구의 목적이 있음

  • PDF

Methodology for Estimating the Probability of Damage to a Heat Transmission Pipe (열수송관 파손확률 추정 방법론 개발)

  • Kong, Myeongsik;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.15-21
    • /
    • 2021
  • Losses of both life and property increased from damage to underground pipe such as heat transmission pipe buried underground in downtown because pipes are gradually aging. Considering the characteristics of the heat transmission pipe, which is not exposed to the outside and difficult to immediately identify problems such as damage, it is realistic to indirectly check the condition of the facility based on the historical information that is periodically collected through facility maintenance. In this study, a methodology for estimating the damage probability was developed by examining the history information of the heat transmission pipe, deriving an evaluation factor that is related to the damage probability. The contribution factor of the damage probability were reviewed by analyzing not only the guidelines for maintenance of heat transmission pipe of advanced European countries and domestic district heating companies, but also the cases of waterworks with similar characteristics. Evaluation factors were selected by considering not only the correlation with the damage probability but also the possibility of securing data. Based on 1999, when the construction technology and standards of heat transmission pipe changed, the damage probability estimation function according to the period of use was divided into the case of being buried before 1998 and the case of being buried after 1999, and presented. In addition, the damage probability was corrected by assigning weights according to the measured data for each evaluation factor such as the diameter, use, and management authority.

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.

A research on Mechanical property and safety degree of laying pipe Line ("매설관로의 역학적 특성 및 안전도에 관한 연구")

  • 김경진
    • Journal of the Korean Professional Engineers Association
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 1982
  • The program of safety performance of synthetic resin pipe which is used to the pipe Line for cable protection as an underground Communication is recognized importance gradually. For investigating of these, The Mechanical experiments by each type was carried out From the results, This study compared experimental data with theorical data against soil pressure and traffic pressure which went through laying pipe, and presumed the reasonable laying conditions after calculating total pressure by each laying depth, also grasped material Property of laying pipe and knew impact effect, relation of thickness against strain.

  • PDF

A Study on the Monitoring Case of the Soil Blocking Facilities Due to Water Pipe Rupture Accident (상수관 파열 사고로 인한 흙막이 가시설 계측사례 연구)

  • Woo, Jong-Tae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.244-246
    • /
    • 2023
  • 아파트 신축공사 흙막이 가시설 현장에 근접 매설된 상수관의 누수 및 파열 사고로 인접 건물이 공사현장 방향으로 58~188mm 기울어졌으며, 지중수평경사계 계측결과 21.07.20일 22.64mm가 21.10.18.일 101.46mm로 급격하게 78.82mm의 큰 수평 변위가 발생되었으며, 이로 인해 흙막이 가시설의 사보강재가 변형되고 토류판 일부가 파손되었다.

  • PDF

Analysis of the Critical Path of Underground Gas Pipe According to Interference Behavior (간섭 거동에 따른 지하 가스 배관의 영향선 분석)

  • Kim, Mi-Seung;Won, Jong-Hwa;Kim, Moon-Kyum;Kim, Tae-Min;Choi, Sun-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • In order to make the critical path analysis of gas pipeline located under rigid pipes for interference behavior, FE analysis is performed considering real buried conditions of a drain and a gas pipe according to intersection angle of two pipes. A drain pipe and gas pipe have cover depth respectively 1.0m and 3.39m and this study considers a interference angle in the range of $0{\sim}90^{\circ}$. In this paper, the critical path is analyzed from the result of Ring Deflection and bending stress according to intersection angle. In the event intersection angle of two pipes equal to the critical path of lower pipe. The analysis results show that the critical path of lower gas pipe according to interference behavior has relation to intersection angle of two pipes.

  • PDF

Development of a Robot System for Repairing a Underground Pipe (지하매설 배관의 보수를 위한 로봇시스템 개발)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1270-1274
    • /
    • 2012
  • The pipe laid underground more than three decades ago are already starting to reveal the problem like corrosion. There have been many studies to design robotic system for a cost-effective revival of old pipes. And the ability to inspect in the pipes, the ability to treat and repaint the pipes and the fault-tolerant robotic system are well known important factors for the robotic system. It's real hard part to manage the underground pipes for companies because it needs high technical and too much money. According to this reasons, in this paper, we had design an in-pipe robotic system having abilities to inspect outworn pipes, to treat and paint old pipes. This new robot system is pressing wall type robot, and it has a good carrying power for working.