• Title/Summary/Keyword: 지하구조물 계측센서

Search Result 11, Processing Time 0.029 seconds

A study on the regulation of durability standard of underground structures monitoring sensors (지하구조물 계측센서의 내구연한 기준에 대한 규정 분석 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.73-81
    • /
    • 2018
  • The purpose of this study is to research the regulation of durability standard of underground structures monitoring sensors. The durability criteria for construction monitoring sensors of domestic construction companies, the standard years of contents such as buildings on the income tax implementation regulations, and the standards of the Public Procurement Service for construction monitoring and construction machinery were analyzed. The durability criterion on products such as the inclination meter and the strain gauge, which are purchased from the Public Procurement Service prior to installation on the underground structure, is 8 to 10 years. It is considered that the monitoring sensor installed in the paperboard and the concrete structure at the time of construction will have considerably shortened service life rather than the useful life of the product itself due to various adverse factors such as groundwater influence and compaction.

A study on estimation of the total loss and damage ratio of maintenance monitoring sensor of subway tunnel (지하철 터널 유지관리 계측센서의 총 손망실율 산정 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • In this study, the total loss and damage ratio of maintenance monitoring which is installed and operated in the domestic and foreign tunnel structure is researched and analyzed for estimating the loss and damage ratio of maintenance monitoring sensor of subway tunnel. The total loss and damage ratio at the elapsed time of 5-6 years after installation is 14.2% in the Seoul metro line no.5,6 and 7, 14.8% in the section 1 of the Seoul metro line no.9, 13.9% in the Channel tunnel of England and all of them are close to 15%. Therefore, it is reasonable to reflect that the total loss and damage ratio of maintenance monitoring sensor of subway tunnel is estimated provisionally 15% on design, and hence the study of the loss and damage ratio with the number of elapsed years in long-term by the measurement category will be needed.

Real-time Health Monitoring of Pipeline Structures (배관 구조물의 상시 건전성 모니터링)

  • Kim, Ju-Won;Kim, Tae-Heon;Lee, Chang-Gil;Park, Seung-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.666-669
    • /
    • 2010
  • 여러 가지 지하시설물 중 국가 주요 자원의 수송망을 책임지는 주요구조물인 수도관, 가스관등의 배관구조물은 접근이 쉽지 않은 지하공간에 복잡하게 연결되어 있어 그 중요성에 비해 유지, 관리, 보수가 쉽지 않았다. 이러한 배관구조물을 균열, 조인트 풀림 등의 손상으로부터 보다 안전하고 효율적으로 관리하기 위하여 상시적 배관구조물 손상진단기법을 연구하였다. 이를 위해 배관 구조물 시험체에 볼트풀림, notch 등과 같은 손상에 대하여 대표적인 압전센서인 PZT와 MFC를 부착하고 임피던스기법 및 유도 초음파기법을 적용하여 볼트풀림개수, notch 손상개수 증가에 따른 출력신호를 반복 계측하였다. 객관적인 평가를 위해 계측된 신호를 신호처리기법인 웨이블렛 변환을 수행하고, RMSD 및 1-CC의 손상지수를 사용하여 구조물손상을 정량화 시켰으며 이를 토대로 구조물의 건전성의 기준이 되는 임계값을 설정함으로서 임피던스와 유도초음파 두 검색기법을 이용한 상시적 배관구조물 건전성 모니터링의 가능성을 살펴보았다.

  • PDF

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

Application and Development Trend of OTDRs (분포형 광섬유센서의 응용 및 개발 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Lee, Chang-Ho;Han, Sung-Jae
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • In these days, the development of optical fiber sensor technology is so remarkable that it can measure various physical and chemical quantities ranging from a few millimeters to over several kilometers. In addition, it is attempted to assess the structural integrity of the state of the advanced technologies and existing structures such as ships, aircrafts, and bridges. This paper introduced the case histories of the measuring technology of optical fiber applied on structures such as roads and tunnels. The case history using OTDR (Optical Time Domain Reflectometery) was also introduced in this paper. Measurement of the pre-convergence of a tunnel is essential to assess the safety of a tunnel and understand the geological conditions ahead of an advancing tunnel. Therefore, the pre-convergence measuring technology using OTDR is expected to substitute conventional measuring techniques.

Development of acoustic emission monitoring system for the safety of geotechnical structures (지반구조물 안전감시용 미소파괴음 계측시스템 개발)

  • Cheon, D.S.;Jung, Y.B.;Park, E.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.471-485
    • /
    • 2014
  • The monitoring method of geotechnical structures using acoustic emission(AE) and microseismicity(MS) is to detect the microscopic deformation and fracture behavior in the inner structures by measuring induced acoustics and vibrations. It can identify a pre-indication of failure by taking advantage of the characteristics that the amount and occurrence rates of AE and MS increase rapidly prior to large scale destruction of the target structures. The monitoring system consisting of high-quality sensors, high-speed data acquisition device and the operation program is required for the practical application of this method. Recently, the AE and MS monitoring systems have been localized. In particular, the developed operation software which can analyze and interpret the measured signals was demonstrated through a number of applications to domestic fields. This report introduces the configuration and features of developed monitoring system, then the challenges and future direction of AE monitoring in geotechnical structures are discussed.

Real-time Health Monitoring of Pipeline Structures Using Piezoelectric Sensors (압전센서를 사용한 배관 구조물의 실시간 건전성 평가)

  • Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2010
  • Pipeline structure is one of core underground infrastructure which transports primary sources. Since the almost pipeline structures are placed underground and connected each other complexly, it is difficult to monitor their structural health condition continuously. In order to overcome this limitation of recent monitoring technique, recently, a Ubiquitous Sensor Network (USN) system based on on-line and real-time monitoring system is being developed by the authors' research group. In this study, real-time pipeline health monitoring (PHM) methodology is presented based on electromechanical impedance methods using USN. Two types of damages including loosened bolts and notches are artificially inflicted on the pipeline structures, PZT and MFC sensors that have piezoelectric characteristics are employed to detect these damages. For objective evaluation of pipeline conditions, Damage metric such as Root Mean Square Deviation (RMSD) value was computed from the impedance signals to quantify the level of the damage. Optimal threshold levels for decision making are estimated by generalized extreme value(GEV) based statistical method. Throughout a series of experimental studies, it was reviewed the effectiveness and robustness of proposed PHM system.

A Study on the impedance-based Wireless Sensor Node for Pipeline Health Monitoring (배관안전진단을 위한 임피던스 USN 노드 시스템 연구)

  • Kwon, JYoung-Min;Lee, Hyung-Su;Yun, Hong-Gu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06d
    • /
    • pp.388-392
    • /
    • 2010
  • 지하 배관 구조물은 국가 주요 자원의 수송망을 책임지는 핵심적인 기능을 수행하는 시설물로써, 배관구조물의 노후화와 부식, 균열, 조인트 풀림 등의 손상으로 인한 누출사고 발생 시 막대한 사회 경제적 손실을 초래할 우려가 있다. 특히, 지중배관 및 노출배관 경우에는, 현장 작업상황이 지속적으로 변화하고 있는 상황에서 24시간 안전관리에 대한 감시체계가 미흡한 것이 현실이다. 고가의 센서설치 및 배관의 유지관리 비용 등의 문제를 극복하려는 센서개발 연구 및 센서로부터 취득된 계측데이터를 현장에서 분석하여 실시간으로 배관의 이상상태를 판정하여 원격으로 그 판정결과를 알려주는 유비쿼터스 원격감시기법에 대한 연구 및 기술개발이 요구된다. 본 논문에서는 USN 기술을 활용한 배관안전진단 기술을 소개하고 임피던스 기반의 자가 감지 기법을 활용한 다양한 구조의 배관에 대해 진단 연구를 수행 하였다.

  • PDF

Evaluation on Damage Effect according Displacement Behavior of Underground Box Structure (지하박스구조물의 변위거동에 따른 손상영향 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.565-570
    • /
    • 2024
  • Recently, due to adjacent excavation work such as new buildings and common tunnel expansion concentrated around the urban railway, deformation of the underground box and tunnel structure of the urban railway built underground has occurred, and as a result, repair and reinforcement work is frequently carried. In addition, the subway is responsible for large-scale transportation, so ensuring the safety and drivability of underground structures is very important. Accordingly, an automated measurement system is being introduced to manage the safety of underground box structures. However, there is no analysis of structural damage vulnerabilities caused by subsidence or uplift of underground box structures. In this study, we aim to analyze damage vulnerabilities for safety monitoring of underground box structures. In addition, we intend to analyze major core monitoring locations by modeling underground box structures through numerical analysis. Therefore, we would like to suggest sensor installation locations and damage vulnerable areas for safety monitoring of underground box structures in the future.

Assessment on the Monitoring System for KURT using Optical Fiber Sensor Cable (광섬유센서케이블을 이용한 지하처분연구시설의 감시시스템 운영 평가)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • Optical fiber cable, as a sensor, was installed on the wall of KAERI(Korea Atomic Energy Research Institute) Underground Research Tunnel(KURT) in order to monitor the physical stability of the tunnel, which was constructed for technical development and demonstration of radioactive waste disposal. This monitoring system has two simultaneous measurements of temperature and strain over time using Brillouin backscatter. According to the results of the monitoring from Jan. 2008 to Nov. 2009, there is no significant displacement or movement at the tunnel wall However, the cumulative volume of total strain increased slightly as time passes with the comparison of the reference observation, which was measured in Jan. 2008. The change in cumulative volume of total strain indicates that the strain level had been affected by saturation and de-saturation phenomena due to groundwater fluctuation at several points at KURT. This system is based on the distributed sensing technique concept, not point sensing. By using this system, a displacement can be detected with the range from $20{\mu}{\varepsilon}$ to $28,000{\mu}{\varepsilon}$ every 1m interval in minimum. A temperature variation can be monitored at every 0.5m interval with the resolution of 0.01 in minimum. Based on the study, this monitoring system is potentially applicable to long term monitoring systems for radioactive waste disposal project as well as other structures and underground openings.