• Title/Summary/Keyword: 지하공동의 안정성

Search Result 130, Processing Time 0.024 seconds

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests (석회암공동 상부 기초의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Heo, Seok
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.493-507
    • /
    • 2016
  • Scaled model tests were performed to investigate the stability of a foundation located above limestone cavities. Cavity shape was assumed to be an ellipse having 1/3 for the ratio of minor to major axis lengths. 12 different test models which have various depths, locations, inclinations, sizes and numbers of cavity were experimented and they were classified into 5 different groups. Crack initiation pressure, maximum pressure, deformation behaviors, failure modes and subsidence profiles of test models were obtained, and then the influences of those parameters on the foundation stability were investigated. No cavity model showed a general shear failure, whereas the models including various cavities showed the complicated three different failure modes which were only punching failure, both punching and shear failures, and double shear failure. The stability of foundation was found to be decreased as the cavity was located at shallower depth, the size and number of cavity were increased. Differential settlements appeared when the cavity was located under the biased part of foundation. Furthermore, subsidence profiles were found to depend on the distribution of underground cavities.

Case Stories of Microgravity Survey for Shallow Subsurface Investigation (고정밀 중력탐사를 이용한 천부 지질구조 조사 사례)

  • Park Yeong-Sue;Rim Hyoungrae;Lim Mutaek;Koo Sung Bon;Kim Hag Soo;Oh Seok Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.181-186
    • /
    • 2005
  • Gravity method produces subsurface density distribution, which is direct information of soundness of basement. Therefore, microgravity is one of the most effective method for detections of limestone cavities, abandoned mine-shafts and other tunnels, The paper show the effectiveness of microgravity by three different field cases.

  • PDF

Review on Thermal Storage Media for Cavern Thermal Energy Storage (지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토)

  • Park, Jung-Wook;Park, Do-Hyun;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.243-256
    • /
    • 2012
  • Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting (발파진동 및 비산충격에 대한 광주 안정성 분석)

  • Park, Hyun-Sik;Kim, Ji-Soo;Ryu, Bok-Hyun;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.9-20
    • /
    • 2012
  • These days, mining industry prefers underground development for large mining because of exhaustive minning resources and large drafts and mining cavities thanks to extensive distribution of heavy excavation machines. In a mining design, to control collapse of cavities and secure stability, design of cavities and pillars are considered as very important. Therefore, this study obtained a prediction equation of blasting vibration through instrumentation for underground cavities. And we obtained theoretical shock vibration imposed on pillar through fragmentation analysis and measurement of flyrock distance. To examine the influence of pillar in underground mining blasting, we carried a finite element analysis and compared the result with prediction equation of blasting vibration, and shock vibration of flyrock when a impact was imposed on pillar and theoretical shock vibration.

Interactions between pre-existing large pipelines and a new tunnel (기존 대구경 파이프라인과 신설터널간의 상호작용)

  • Jeong, Sun-Ah;Choi, Jung-In;Hong, Eun-Soo;Chun, Youn-Chul;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.175-188
    • /
    • 2009
  • When a new tunnel is excavated by the drill and blast method near pre-existing underground structures or tunnels due to the region restricted condition such as urban area, the ground will be relaxed by the excavation. In this case, issues can be created in terms of stability of pre-existing underground structures. One of major factors determining the stability of pre-existing underground structures can be a separation distance between pre-existing underground structures and a newly excavated tunnel. The region of ground relaxation defined by the plastic zone due to new excavation can be varied by separation distance. In this study, in other to estimate an influence of new tunnel excavation in terms of separation distance on the stability of pre-existing large pipelines, two-dimensional scaled model tests using plaster were performed for six models which have a different separation distance, The results show that based on the analysis of induced displacement during tunnel construction, the displacement decreases as the separation distance between large pipeline and new tunnel is increased until the distance is 2.5 times of pipeline diameter. Beyond this point, however, the displacement has become stabilized.

The Estimation of Temperature distribution around Gas Storage Cavern (저온가스 저장공동 주위암반의 온도분포 예측에 관한 연구)

  • Lee, Yang;Lee, Seung-Do;Moon, Hyun-Koo
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.16-25
    • /
    • 2004
  • As underground caverns have many advantages such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas affects the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the caverns. The main purpose of this study is the development of theoretical solution to be able to estimate the temperature distribution around storage caverns and the assessment of the solution. In this study, a theoretical solution and a conceptual model for estimating two and three dimensional temperature distribution around the storage caverns are suggested. Based on the multi-dimensional transient heat transfer theory, the theoretical solution is successfully derived by assuming the caverns shape as simplified geometry. In order to assess the theoretical solution, by performing numerical experiments with this multi-dimensional model, the temperature distribution of the theoretical solution is compared with that of numerical analysis. Furthermore, the effects of the caverns size are investigated.

암석역학 전문가 시스템(ROMES)에 의한 암반분류 연구

  • 양형식;김남수;이희근;김호영
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.181-185
    • /
    • 1995
  • 현재 구미에서 터널의 설계에는 RMR, Q와 같은 암반분류 기법과 경계요소 해석법과 같은 간략한 탄성 프로그램에 경험적 파괴조건식을 적용하여 이완대를 계산하고 터널의 지보량을 추정하는 방식이 널리 적용되고 있다. RMR이나 Q와 같은 암반분류법은 지하공동의 안정성에 영향을 미치는 중요한 지질 요인들에 근거하여 암반을 몇가지 등급으로 분류하고 지보방법을 결정하는 분류 방식으로 가장 많이 사용되고 있으나 각 항목의 평가방식이 경험적인 판단을 요하게 되어 주관적인 오류에 빠질 가능성이 많고, 또 여러 가지 대체 수단이 있어 종합적인 판단을 얻기가 용이하지가 않다. (중략)

  • PDF

Numerical Stability Evaluation of Underground Semi-Spherical Cavity (반구형 지중공동의 수치해석적 안정성 평가)

  • Lee, Taegeon;Ryu, Dong-Woo;Youn, Heejung
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • The existence of underground cavity should be considered in the assessment of georisk such as ground subsidence. Even if the shear strength of the ground around the cavity is known, it is difficult to accurately analyze the safety around the cavity due to the uncertainties related to geometric conditions such as the cavity size. In this paper, stability chart representing dimensionless stability constants was proposed based on the ground strength and geometric conditions. Numerical analysis had been carried out accounting for the stability constants such as the ground strength, the adhesion and friction angles, and the size and depth of the underground cavity. The proposed charts can help estimating the stability of ground with underground circular cavity.

Stability Assessment of Abandoned Gangway for Commercial Utilization of Services (서비스업 활용을 위한 광산 폐갱도의 안정성 평가)

  • SunWoo, Choon;Chung, So-Keul;Lee, Yun-Su;Kang, Sang-Soo;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.297-309
    • /
    • 2012
  • The stability assessment of abandoned gangway for the purpose of services was performed. Among the many factors that affect the stability of openings, the span of the opening in a given rock mass condition provides an important element of design. In this paper, the stability of gangway was assessed by the critical span curves proposed by Lang, the modified Mathews'stability graph method and using support measures of the Q system. In the evaluation of stability as a whole the gangway is considered as stable. But the rockfalls of wedge-shaped blocks were expected in the area in which the horizontal joints of low angle appear. The support measures such as local rock bolts are required to use for commercial purposes of the abandoned gangway. And entrance section may require the particular attention as unstable section. Since there are so many spalling due to bad blasting in the roof and sidewall of gangway, the scaling operations should be followed primarily.