• 제목/요약/키워드: 지표전자탐사

검색결과 43건 처리시간 0.034초

Mapping of Underground Geological Boundaries overlain by Conductive Overburden: Application of TEM Soundings (TEM 탐사에 의한 간척지내 전도성 표층 하부 지질 구성 파악)

  • Hwang, Hak-Soo;Moon, Sang-Ho
    • The Journal of Engineering Geology
    • /
    • 제21권3호
    • /
    • pp.213-219
    • /
    • 2011
  • Transient/time-domain electromagnetic (TEM) soundings were carried out on reclaimed land, since the TEM sounding has good resolution of a conductive and thin overburden. The reclamation material is marine clay dredged from the seafloor, which is currently undergoing consolidation in the upper part of the dredged layer. The conductivity of the marine-origin clay is generally more than 0.3 S/m. The aim of the TEM sounding was to determine the depths of weathered and soft rocks overlain by thick and conductive overburden. The TEM responses were measured at delay times of 0.050-20.575 ms with a $30{\times}30$ m coincident loop array. Data from the TEM inversion and core logging indicate that the resistivities of the conductive overburden are less than 2 ${\Omega}$-m, while those of the weathered and soft rocks are 10-20 and 70 ${\Omega}$-m, respectively. The depth to weathered rock is 26-58 m and the depth to soft rock is 46-75 m.

A study on the Difference Arrow of GDS (Geomagnetic Depth Sounding) Survey using 2-D MT (Magneto-Telluric) Modeling (2차원 MT(Magneto-Telluric)모델링을 이용한 지자기 수직탐사(Geomagnetic Depth Sounding)에서의 차이 지시자의 연구)

  • 양준모;오석훈;이덕기;윤용훈
    • Economic and Environmental Geology
    • /
    • 제35권6호
    • /
    • pp.567-573
    • /
    • 2002
  • Two-dimensional MT (Magneto-Telluric) modeling is performed to verify the validity of difference arrow for GDS(Geomagnetic Depth Sounding) survey. The electromagnetic mutual coupling between the sea and in-land conductor is used as a criterion that judges the validity of difference arrow. In this study, the mutual coupling between them is examined according to the spatial distance between them and the period of magnetic variations. The difference arrow is valid for conductors located at surface which are far from the sea or when the long period is used, but the mutual coupling is weak for buried conductor in all the periods. However, when a conductor extends vertically down to the deep part, the validity of difference arrow is in doubt, since the strong mutual coupling influences up to the long period. Therefore, to remove the known conductor effect such as sea effect from the observed induction arrow, the mutual coupling between them must be examined and the caution must be exercised in interpreting the resultant difference arrow if mutual coupling between them is strong.

Estimation of Surface Layer Heat Flux Using the UHF Sensor Installed on UAV (UHF 센서 탑재 UAV를 이용한 지표층 열 플럭스 산출)

  • Kim, Min-Seong;Kwon, Byung Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제13권1호
    • /
    • pp.265-276
    • /
    • 2018
  • Observation and data analysis techniques have been developed for observational blind areas in the lower atmosphere that are difficult to be monitored with fixed equipment on the ground. The vertical data of temperature and relative humidity are remotely collected by the UHF radiosonde installed on UAV and compared with the data measured in the 10 m weather tower. From the validated vertical profile, extrapolated surface temperature and the bulk transfer method were used to estimate the sensible heat flux depending on the atmospheric stability. Compared with the sensible heat flux measured by the 3-dimensional ultrasonic anemometer on the ground, the error of the sensible heat flux estimated was 23% that is less than the range of 30% allowed in the remote sensing. Estimated atmospheric boundary layer height from UAV sensible heat fluxes can provide useful data for air pollution diffusion models in real time and economically.

A Review on Past Cases of Geophysical Explorations for Assessment of Slope Stability (사면 안정성 평가를 위한 물리탐사 적용 사례 분석)

  • Cho, Ahyun;Joung, Inseok;Jeong, Juyeon;Song, Seo Young;Nam, Myung Jin
    • Economic and Environmental Geology
    • /
    • 제55권1호
    • /
    • pp.111-125
    • /
    • 2022
  • Since landslide can cause huge damages to many facilities, close characterization of slopes is needed for appropriate reinforcements for the unstable ones in order to prevent the damages. Geophysical surveys, which can characterize a large area at a relatively low cost without disturbing slopes, have been widely employed for the assessment of slope stability in other countries. However, only conventional direct investigation methods are mainly used in Korea. In this paper, we analyzed various cases, which evaluated slope stabilities by characterizing slopes using geophysical exploration. First, we introduced changes in geophysical properties due to unstable media of slope like fracture location, fracture connectivity and distribution of groundwater level, and subsequently discussed the applicability of geophysical methods to the detection of the changes; the methods include electrical resistivity survey, seismic survey, self-potential survey, induced polarization survey and ground penetrating radar. Based on this description, we analyzed how geophysical surveys were performed on various slopes.

Utilization of Database in 3D Visualization of Remotely Sensed Data (원격탐사 영상의 3D 시각화와 데이터베이스의 활용)

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제45권3호
    • /
    • pp.40-46
    • /
    • 2008
  • 3D visualization of geological environments using remotely sensed data and the various sources of data provides new methodology to interpret geological observation data and analyze geo-information in earth science applications. It enables to understand spatio-temporal relationships and causal processes in the three-dimension, which would be difficult to identify without 3D representation. To build more realistic geological environments, which are useful to recognize spatial characteristics and relationships of geological objects, 3D modeling, topological analysis, and database should be coupled and taken into consideration for an integrated configuration of the system. In this study, a method for 3D visualization, extraction of geological data, storage and data management using remotely sensed data is proposed with the goal of providing a methodology to utilize dynamic spatio-temporal modeling and simulation in the three-dimension for geoscience and earth science applications.

Geoscientific land management planning in salt-affected areas* (염기화된 지역에서의 지구과학적 토지 관리 계획)

  • Abbott, Simon;Chadwick, David;Street, Greg
    • Geophysics and Geophysical Exploration
    • /
    • 제10권1호
    • /
    • pp.98-109
    • /
    • 2007
  • Over the last twenty years, farmers in Western Australia have begun to change land management practices to minimise the effects of salinity to agricultural land. A farm plan is often used as a guide to implement changes. Most plans are based on minimal data and an understanding of only surface water flow. Thus farm plans do not effectively address the processes that lead to land salinisation. A project at Broomehill in the south-west of Western Australia applied an approach using a large suite of geospatial data that measured surface and subsurface characteristics of the regolith. In addition, other data were acquired, such as information about the climate and the agricultural history. Fundamental to the approach was the collection of airborne geophysical data over the study area. This included radiometric data reflecting soils, magnetic data reflecting bedrock geology, and SALTMAP electromagnetic data reflecting regolith thickness and conductivity. When interpreted, these datasets added paddock-scale information of geology and hydrogeology to the other datasets, in order to make on-farm and in-paddock decisions relating directly to the mechanisms driving the salinising process. The location and design of surface-water management structures such as grade banks and seepage interceptor banks was significantly influenced by the information derived from the airborne geophysical data. To evaluate the effectiveness ofthis planning., one whole-farm plan has been monitored by the Department of Agriculture and the farmer since 1996. The implemented plan shows a positive cost-benefit ratio, and the farm is now in the top 5% of farms in its regional productivity benchmarking group. The main influence of the airborne geophysical data on the farm plan was on the location of earthworks and revegetation proposals. There had to be a hydrological or hydrogeological justification, based on the site-specific data, for any infrastructure proposal. This approach reduced the spatial density of proposed works compared to other farm plans not guided by site-specific hydrogeological information.

Change of NDVI by Surface Reflectance Based on KOMPSAT-3/3A Images at a Zone Around the Fukushima Daiichi Nuclear Power Plant (후쿠시마 제1 원전 주변 지역의 KOMPSAT-3/3A 영상 기반 지표반사도 적용 식생지수 변화)

  • Lee, Jihyun;Lee, Juseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • 제37권6_3호
    • /
    • pp.2027-2034
    • /
    • 2021
  • Using multi-temporal KOMPSAT-3/3A high-resolution satellite images, the Normalized Difference Vegetation Index (NDVI) for the area around the Fukushima daiichi nuclear power plant was determined, and the pattern of vegetation changes was analyzed. To calculate the NDVI, surface reflectance from the KOMPSAT-3/3A satellite image was used. Satellite images from four years were used, and the zones where the images overlap was designated as the area of interest (AOI) for the study, and by setting a profile passing through highly vegetated area as a data analysis method, the changes by year were examined. In addition, random points were extracted within the AOI and displayed as a box plot to quantitatively indicate change of NDVI distribution pattern. The main results of this study showed that the NDVI in 2014 was low within AOI in the vicinity of the nuclear power plant, but vegetated area continued to expand until 2021. These results were also confirmed in the change monitoring results shown in a profile or box plot. In disaster areas where access is restricted, such as the Fukushima nuclear power plant area, where it is difficult to collect field data, obtaining land cover classification products with high accuracy using satellite images is challenging, so it is appropriate to analyze them using primary outputs such as vegetation indices obtained from high-resolution satellite imagery. It is necessary to establish an international cooperation system for jointly utilizing satellite images. Meanwhile, to periodically monitor environmental changes in neighboring countries that may affect the Korean peninsula, it is necessary to establish utilization models and systems using high-resolution satellite images.

A Suggestion for Surface Reflectance ARD Building of High-Resolution Satellite Images and Its Application (고해상도 위성 정보의 지표 반사도 Analysis-Ready Data (ARD) 구축과 응용을 위한 제언)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • 제37권5_1호
    • /
    • pp.1215-1227
    • /
    • 2021
  • Surface reflectance, as a product of the absolute atmospheric correction process of low-orbit satellite imagery, is the basic data required for accurate vegetation analysis. The Commission on Earth Observation Satellite (CEOS) has conducted research and guidance to produce analysis-ready data (ARD) on surface reflectance products for immediate use by users. However, this trend is still in the early stages of research dealing with ARD for high-resolution multispectral images such as KOMPSAT-3A and CAS-500, as it targets medium- to low-resolution satellite images. This study first summarizes the types of distribution of ARD data according to existing cases. The link between Open Data Cube (ODC), the cloud-based satellite image application platforms, and ARD data was also explained. As a result, we present practical ARD deployment steps for high-resolution satellite images and several types of application models in the conceptual level for high-resolution satellite images deployed in ODC and cloud environments. In addition, data pricing policies, accuracy quality issue, platform applicability, cloud environment issues, and international cooperation regarding the proposed implementation and application model were discussed. International organizations related to Earth observation satellites, such as Group on Earth Observations (GEO) and Committee on Earth Observation Satellites (CEOS), are continuing to develop system technologies and standards for the spread of ARD and ODC, and these achievements are expanding to the private sector. Therefore, a satellite-holder country looking for worldwide markets for satellite images must develop a strategy to respond to this international trend.

Introduction to Geophysical Exploration Data Denoising using Deep Learning (심층 학습을 이용한 물리탐사 자료 잡음 제거 기술 소개)

  • Caesary, Desy;Cho, AHyun;Yu, Huieun;Joung, Inseok;Song, Seo Young;Cho, Sung Oh;Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • 제23권3호
    • /
    • pp.117-130
    • /
    • 2020
  • Noises can distort acquired geophysical data, leading to their misinterpretation. Potential noises sources include anthropogenic activity, natural phenomena, and instrument noises. Conventional denoising methods such as wavelet transform and filtering techniques, are based on subjective human investigation, which is computationally inefficient and time-consuming. Recently, many researchers attempted to implement neural networks to efficiently remove noise from geophysical data. This study aims to review and analyze different types of neural networks, such as artificial neural networks, convolutional neural networks, autoencoders, residual networks, and wavelet neural networks, which are implemented to remove different types of noises including seismic, transient electromagnetic, ground-penetrating radar, and magnetotelluric surveys. The review analyzes and summarizes the key challenges in the removal of noise from geophysical data using neural network, while proposes and explains solutions to the challenges. The analysis support that the advancement in neural networks can be powerful denoising tools for geophysical data.

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • 제23권8호
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.