• Title/Summary/Keyword: 지표온도변화

Search Result 359, Processing Time 0.032 seconds

Study on the Texture and Staling of Breads with Addition of Various Hydrocolloids (Hydrocolloids를 첨가한 식빵의 텍스쳐와 노화에 관한 연구)

  • Lee, Seung Ju;Cho, Sook-Kyung;Lee, Seung-Joo
    • Korean journal of food and cookery science
    • /
    • v.24 no.5
    • /
    • pp.636-644
    • /
    • 2008
  • The principal objective of this study was to assess the effects of hydrocolloids(xanthan gum, guar gum, sodium alginate, k-carrageenan, carboxy-methyl cellulose) on the suppression of retrogradation in the bread. The pasting properties of the doughs and the sensory properties were determined in the bread samples, to which xanthan gum, guar gum, sodium alginate, k-carrageenan, and CMC, were added at different ratios(0.2%, 0.6%, 1%). CMC and k-carrageenan with 0.6% level were selected for the further retrogradation studies. Changes in the firmness of the bread samples at room temperature for 15 days were assessed using a texture analyzer, and the type of retrogradation was calculated via the Avrami equation. The thermal properties of the samples were also determined via differential scanning calorimetry (DSC). The addition of hydrocolloids was shown to increase the viscosities of the doughs. Setback and breakdown viscosity were reduced significantly via the addition of CMC(0.6%, 1%), xanthan gum(1%), and k-carrageenan(1%). Sensory hardness was significantly increased when 1% hydrocolloids were added. Our textural analysis showed that the addition of CMC reduced the firmness of the bread, whereas k-carrageenan didn't. However, the retrogradation rate was reduced via the addition of k-carrageenan, as was also demonstrated in the results of our DSC analysis.

Power Consumption Analysis of Routing Protocols using Sensor Network Simulator (센서 네트워크 시뮬레이터를 이용한 라우팅 프로토콜의 전력소모량 분석)

  • Kim, Bang-Hyun;Jung, Yong-Doc;Kim, Tea-Kyu;Kim, Jong-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.414-418
    • /
    • 2006
  • 유비쿼터스 컴퓨팅의 인프라가 되는 센서 네트워크는 매우 작은 하드웨어로 이루어지는 많은 수의 센서 노드들로 구성된다. 이 네트워크의 토폴로지와 라우팅 방식은 그 목적에 따라 결정되어야 하며, 하드웨어 및 소프트웨어도 필요한 경우에는 변경되어야 한다. 따라서 그러한 네트워크를 최적으로 설계하기 위해서는 시스템 동작을 확인하고 성능을 예측할 수 있는 센서 네트워크 시뮬레이터가 필요하다. 현존하는 몇몇 센서 네트워크 시뮬레이터들은 특정 하드웨어나 운영체제에 맞추어 개발되었기 때문에, 그러한 특정 시스템들을 위해서만 사용될 수 있다. 그리고 시스템 설계 상의 주요 이슈가 되는 전력 소모량 및 프로그램 실행 시간을 추정하기 위한 어떤 수단도 지원하지 못하고 있다. 이 연구에서는 기존의 센서 네트워크 시뮬레이터들이 갖고 있는 문제점을 해결한 시뮬레이터를 개발하고, 센서 네트워크의 계층적 라우팅 프로토콜인 LEACH, TEEN, APTEEN의 전력소모량을 시뮬레이션을 이용하여 분석하였다. 시뮬레이션의 작업부하인 명령어 트레이스로는 ATmega128L 마이크로컨트롤러용 크로스컴파일러에 의해 생성된 실행 이미지를 사용하였다. 따라서 각각의 라우팅 프로토콜을 실제 센서 보드에서 동작하는 응용 프로그램으로 구현하고, 컴파일된 실행 이미지를 작업부하로 사용하여 시뮬레이션 하였다. 라우팅 프로그램들은 ETRI의 센서 네트워크 운영체제인 Nano-Q+ 1.6.1을 기반으로 구현되었으며, 하드웨어 플랫폼은 옥타컴의 센서 보드인 Nano-24이다. 시뮬레이션 결과에 따르면, 센서 네트워크는 그 사용 목적에 따라 라우팅 프로토콜을 적절히 선택해야 한다는 것을 알 수 있다. 즉, LEACH는 주기적으로 네트워크의 상황을 체크해야 하는 경우에 적합하고, TEEN은 환경의 변화를 수시로 감지해야 하는 경우에 적합하다. 그리고 APTEEN은 전력소모량과 기능 측면을 모두 고려할 때 가장 효과적인 라우팅 프로토콜이라고 할 수 있다.iRNA 상의 의존관계를 분석할 수 있었다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다(rho=0.9, p=0.04). 결론: $[^{11}C]raclopride$ PET을 이용하여 비흡연 정상인에서 흡연에 의한 도파민 유리를 영상화 및 정량화 하였고, 흡연에 의한 선조체내 도파민 유리는 흡연시 흡수된

  • PDF

Regenerating Condition Optimization of NGCC Combined Carbon Capture Process Simultaneously Considering Absorption and Regeneration Rates (흡수율과 재생율을 동시 고려한 천연가스복합발전 공정 연계 이산화탄소 포집 공정의 재생 조건 최적화)

  • Jeong Hun Choi;Young-Hwan Chu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.368-377
    • /
    • 2023
  • Natural Gas Combined Cycle(NGCC) recently receives lots of attention as an attractive form of power plants by virtue of its low carbon emission compared with coal-fired power plant. Nevertheless, it also needs carbon capture process since it is difficult to completely suppress carbon emission even for the NGCC. A simulation study has been performed to optimize operating condition of a carbon capture process using MEA considering low partial pressure of carbon dioxide in NGCC emission gas. For accurate optimization, overall process model including both NGCC and the carbon capture process has been built with a simulation software. Then, optimization in which various performance indices such as carbon dioxide absorption rate, solvent regeneration rate and power loss in the NGCC are simultaneously reflected has been done. Especially, it is noticeable that this study focuses on not only the amount of energy consumption but also the absorption and regeneration performance of carbon capture process. The best result considering all the performance indices has been achieved when the reboiler temperature is 120 ℃ and the reason has been analyzed.

Changes of Stress Response and Physiological Metabolic Activity of Flounder, Paralichthys olivaceus Following to Food Deprivation and Slow Temperature Descending (먹이제한과 단기 수온하강 조건에서 넙치의 스트레스 반응과 생리학적 대사활성 변화)

  • Myeong, Jeong-In;Kang, Duk-Young;Kim, Hyo-Chan;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul
    • Korean Journal of Ichthyology
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2011
  • To find the preliminary environmental conditions for a short-time transport of living olive flounder, Paralichthys olivaceus, the stress response and physiological metabolic activity of the cultured fish to feed deprivation and slow temperature descending ($15.8^{\circ}C{\rightarrow}13.3^{\circ}C$) were monitored for 8 days. The monitored variables were the plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), total protein (TP), electrolytes ($Na^+$, $K^+$, $Cl^-$) and thyroid hormones ($TT_4$, $TT_3$, $FT_4$ and $FT_3$). In food deprivation experiment for 8 days, we did not find any statistical change of level in AST, ALT and electrolytes ($Na^+$, $K^+$, $Cl^-$), but found a significant decrease in TP and GLU. In thyroid hormones, the levels of four hormones in plasma were all showing a tendency to decrease. Especially, $FT_4$ and $TT_3$ were significantly decreased, indicating a withering of physiologic activity. In the temperature test, although no any significant change in AST, TP and electrolytes ($Na^+$, $K^+$, $Cl^-$), we observed a significant decrease of ALT and GLU following to temperature descending from $15.8^{\circ}C$ to $13.3^{\circ}C$ (P<0.05). In the levels of thyroid hormones, any significant change was not observed for experimental period. We conclude that the stress response and physiological activity of olive flounder were more influenced by feed deprivation than slow temperature descending at a transport of living fish, and plasma GLU appears to be sensitive factor to physiological metabolic activity, indicating that it could be used as a monitering mark or index for a health inspection of the fish.

Analysis of Unrest Signs of Activity at the Baegdusan Volcano (백두산 화산의 전조활동 분석 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

Determination of Greening and Shelf Life of Potato Based on Washing and Storage Temperature Conditions (감자의 세척유무 및 저장온도에 따른 녹화 및 상품성 유지 기간 구명)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Nam, Jung Hwan;Chang, Dong Chil;Suh, Jong Taek;Kim, Yul Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.66-72
    • /
    • 2017
  • Potato greening determines the shelf life and affects the marketability of this tuber. Various stresses during handling and storage interact to affect the tuber's physiological status and can affect the rate of greening. This study investigated the effects of storage temperature on tuber greening and shelf life in unwashed and washed potatoes of the cultivar Superior. Physiological and biochemical changes were examined during 15 days at room temperature ($23{\pm}2^{\circ}C$) under cool-white fluorescent light after storage for 1 month at different temperatures ($4^{\circ}C$, $20^{\circ}C$). Hunter a values were negative (-) for washed potatoes after 3 days (-0.8) and 15 days (-2.5) at room temperature following 1 month of storage at $4^{\circ}C$ while positive (+) values were observed for unwashed potatoes after 15 days at room temperature. The Hunter ${\Delta}E$ values of washed potatoes previously stored at $4^{\circ}C$ for 1 month increased after 3 days at room temperature compared with those of unwashed potatoes. The total chlorophyll content of washed potatoes was higher than that of unwashed potatoes. The highest correlation was observed between the Hunter ${\Delta}E$ value and Hunter a value (-0.93506), while a positive correlation coefficient (0.89806) was observed between greening criteria and Hunter ${\Delta}E$ value by using colorimetry. We conclude, therefore, that there is a biosynthetic link between temperature-induced chlorophyll accumulation and tuber greening in storage.

An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature (위성영상을 이용한 도시녹지의 기온저감 효과 분석)

  • Yoon, Min-Ho;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • Urbanization brings several changes to the natural environment. Its consequences can have a direct effect on climatic features, as in the Urban Heat Island Effect. One factor that directly affects the urban climate is the green area. In urban areas, vegetation is suppressed in order to accommodate manmade buildings and streets. In this paper we analyze the effect of green areas on the urban temperature in Seoul. The period selected for analysis was July 30th, 2007. The ground temperature was measured using Landsat TM satellite imagery. Land cover was calculated in terms of city area, water, bare soil, wet lands, grass lands, forest, and farmland. We extracted the surface temperature using the Linear Regression Model. Then, we did a regression analysis between air temperature at the Automatic Weather Station and surface temperature. Finally, we calculated the temperature decrease area and the population benefits from the green areas. Consequently, we determined that a green area with a radius of 500m will have a temperature reduction area of $67.33km^2$, in terms of urban area. This is 11.12% of Seoul's metropolitan area and 18.09% of the Seoul urban area. We can assume that about 1,892,000 people would be affected by this green area's temperature reduction. Also, we randomly chose 50 places to analysis a cross section of temperature reduction area. Temperature differences between the boundaries of green and urban areas are an average of $0.78^{\circ}C$. The highest temperature difference is $1.7^{\circ}C$, and the lowest temperature difference is $0.3^{\circ}C$. This study has demonstrated that we can understand how green areas truly affect air temperature.

Fine Root Biomass in Pinus densiflora Stands using Soil Core Sampling and Minirhizotrons (토양 코어 및 미니라이조트론을 이용한 소나무 임분의 세근 바이오매스 연구)

  • Han, Seung Hyun;Yoon, Tae Kyung;Han, Saerom;Yun, Soon Jin;Lee, Sun Jeoung;Kim, Seoungjun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Fine root distribution was investigated in Pinus densiflora stands using soil core sampling and minirhizotrons, and conversion factors and regression equations were developed for converting minirhizotron data into fine root biomass. Fine root biomass was measured by soil core sampling from October, 2012 to September, 2013 once a month except for the winter, and surface area of fine roots was estimated by minirhizotrons from May to August, 2013 once a month. Fine root biomass and surface area were significantly higher in the upper soil layers than in the lower soil layers. Fine root biomass showed seasonal patterns; the mean fine root biomass ($kg{\cdot}ha^{-1}$) in summer (3,762.4) and spring (3,398.0) was significantly higher than that in autumn (2,551.6). Vertical and seasonal patterns of fine root biomass might be related to the soil bulk density, nutrient content and temperature with soil depth, and seasonal changes of soil and air temperature. Conversion factors (CF) between fine root surface area from minirhizotron data and fine root biomass from soil core sampling were developed for the three soil depths. Then a linear regression equation was developed between the predicted fine root biomass using CF and the measured fine root biomass (y = 79.7 + 0.93x, $R^2=0.81$). We expect to estimate the long-term dynamics of fine roots using CF and regression equation for P. densiflora forests in Korea.

A Respiration Rate Measurement of Fresh Fruits and Vegetables with a Corrected Pressure Variation Method (수정된 압력변위법을 이용한 과채류 호흡속도 측정)

  • Lee, Hyun-Dong;Chung, Hun-Sik;Kang, Jun-Soo;Chung, Shin-Kyo;Choi, Jong-Uck
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1119-1124
    • /
    • 1997
  • This study was carried out for improvement and correction of the traditional pressure variation method (PVM) in the respiration rate measurements of fresh fruits and vegetables using a microcomputer system and a differential pressure sensor. Water vapor pressure in the container was calculated by equations for psychrometric calculations. At the beginning of experimental period water vapor pressure in the container was increased and maintained constantly in the most experimental period, but was decreased dramatically after $CO_2$ scrubbing. The percentages of water vapor pressure on total differential pressure were $33{\sim}46%$ at $1^{\circ}C$, $23{\sim}45%$ at $11^{circ}C$ and $35{\sim}53%$ at $21^{\circ}C$. The differences between the respiration rates determined by gas chromatography and corrected pressure variation method (CPVM) were $0.2{\sim}0.3\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $0.2{\sim}2.9\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and 1.0{\sim}9.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, while those between gas chromatography and normal pressure variation method (PVM) were $0.8{\sim}1.2\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $3.9{\sim}11.0\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and $8.0{\sim}32.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, respectively. The differences of the respiration rates with CPVM were smaller than those with PVM. CPVM, therefore, were more exact and convenient method than PVM in the measurement of respiration rate of fresh produce.

  • PDF

Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea (국내에서 ECOSTRESS 지표면 온도 및 증발산(PT-JPL) 자료의 검증)

  • Park, Ki Jin;Kim, Ki Young;Kim, Chan Young;Park, Jong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.637-648
    • /
    • 2024
  • The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea.