• Title/Summary/Keyword: 지표면인자

Search Result 133, Processing Time 0.03 seconds

Aquifer bottom estimation study applicable to hydrological model (수문학적 분포형 모형에 적용 가능한 대수층 깊이 추정 연구)

  • Yoon, Tae Hee;Jang, Suk Hwan;Shin, Jae Whan;Seol, Seong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.322-322
    • /
    • 2022
  • 유역 모형은 강우가 유출에 이르는 과정을 수문학적으로 재현해낼 수 있는 도구이다. 초기의 모형은 간단한 수준에서 유출과정을 모의하는데 그쳤으나, 기술이 발전함에 따라 유역 모형에 적용되는 매개변수의 수가 점차 늘어나게 되며 이론적 신뢰성과 복잡성을 동시에 갖게 되었다. 유역 모형은 집중형 모형과 분포형 모형으로 대별할 수 있는데, 기존에는 저류 함수법을 근간으로 하는 개념 기반의 HEC-HMS HEC-RAS 등과 같은 집중형 모형을 널리 사용한 반면, 점차 격자 기반에서 물리적 계산을 통해 유출 과정을 모의할 수 있는 GSSHA, Vflo, SWAT과 같은 분포형 모형의 활용이 늘어나고 있는 추세이다. 집중형 모형은 관측자료를 통해 산정된 경험식에 의존하고 있는 반면, 분포형 모형의 경우 각 격자가 가지고 있는 시·공간적 매개변수를 통해 물리적으로 유출과정을 계산하여 신뢰성을 확보하기에 유리하며, 미계측 유역에서도 활용이 가능하다. 지하수는 유역 모형의 댜양한 매개변수들 중 지표면 유출량에 밀접한 영향을 미치는 인자이다. 그럼에도 아직까지 경험식에 의존한 집중형 모형이 주를 이루고 있는 국내에서는 분포형 모형에 적용가능한 매개변수 최적화에 대한 연구는 미진한 실정이다. 이에 본 연구에서는 분포형 유역 모형의 침투모의 과정에 관여하는 공간 매개변수 중 밀접한 연관을 띠고 있는 대수층 깊이에 대하여 분석하였다. 여러 공간매개변수 중 침투능과 관계가 깊은 대수층 깊이에 대해 가장 적합한 매개변수 값을 도출해 내는 것이 본 연구의 최종 목적이라고 할 수 있으며, 분석은 국내 자연하천 유역을 대상으로 분포형 유역 모형에 일반적인 수준으로 적용할수 있는 범위를 검토하였다. 본 연구를 통하여 분포형 유역 모형에서 하나의 매개변수인 대수층 깊이의 정량화에 기여되기를 바란다.

  • PDF

Investigation of O4 Air Mass Factor Sensitivity to Aerosol Peak Height Using UV-VIS Hyperspectral Synthetic Radiance in Various Measurement Conditions (UV-VIS 초분광 위성센서 모의복사휘도를 활용한 다양한 관측환경에서의 에어로솔 유효고도에 대한 O4 대기질량인자 민감도 조사)

  • Choi, Wonei;Lee, Hanlim;Choi, Chuluong;Lee, Yangwon;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.155-165
    • /
    • 2020
  • In this present study, the sensitivity of O4 Air Mass Factor (AMF) to Aerosol Peak Height (APH) has been investigated using radiative transfer model according to various parameters(wavelength (340 nm and 477 nm), aerosol type (smoke, dust, sulfate), aerosol optical depth (AOD), surface reflectance, solar zenith angle, and viewing zenith angle). In general, it was found that O4 AMF at 477 nm is more sensitive to APH than that at 340 nm and is stably retrieved with low spectral fitting error in Differential Optical Absorption Spectroscopy (DOAS) analysis. In high AOD condition, sensitivity of O4 AMF on APH tends to increase. O4 AMF at 340 nm decreased with increasing solar zenith angle. This dependency isthought to be induced by the decrease in length of the light path where O4 absorption occurs due to the shielding effect caused by Rayleigh and Mie scattering at high solar zenith angles above 40°. At 477 nm, as the solar zenith angle increased, multiple scattering caused by Rayleigh and Mie scattering partly leads to the increase of O4 AMF in nonlinear function. Based on synthetic radiance, APHs have been retrieved using O4 AMF. Additionally, the effect of AOD uncertainty on APH retrieval error has been investigated. Among three aerosol types, APH retrieval for sulfate type is found to have the largest APH retrieval error due to uncertainty of AOD. In the case of dust aerosol, it was found that the influence of AOD uncertainty is negligible. It indicates that aerosol types affect APH retrieval error since absorption scattering characteristics of each aerosol type are various.

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

Spatial Analysis of Oak Wilt Disease in Bukhansan Mountain Park Using Spatial Data of Damaged Trees (피해목 위치자료를 이용한 북한산 국립공원 참나무시들음병 공간분석)

  • Zhu, Yongyan;Piao, Dongfan;Lee, Woo-kyun;Jeon, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.879-888
    • /
    • 2017
  • This study is a preliminary research conducted in Buhansan mountain National Park to develop a management system to predict and control oak wilt disease by indicating spatial factors which affect diffusion of the disease. After analysing altitude factor during the estimation of spatial analysis of damaged area, it is indicated that damaged trees are mainly distributed at altitude of 200-500 m and number decreased drastically over the altitude of 500 m. The result showed that 92% of total damaged trees are on slope between 20~40 degrees and the number decreased drastically on slope steeper than 40 degrees. It is indicated that damaged area is mainly distributed on southern aspect. It is estimated by using CART that slope factor affected the diffusion of disease mostly but aspect factor did not. Surface temperature and altitude showed similar effect.By simulating possible diffusion scenario, it is estimated that the disease could spread to DO-BONG Mt., northeast of Bukhansan mountain.

An Analytical Study on the Slope Safety Factor Considering Various Conditions (다양한 조건을 고려한 사면안전율에 관한 해석적 연구)

  • Park, Choon-Sik;Ahn, Sang-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.31-41
    • /
    • 2019
  • This paper demonstrates safety factor for effective planning at initial stage by utilizing results on changes of safety factor according to various conditions of slop and examines impacts of factors that affect slope safety factors as well. Firstly, it describes shear strength which satisfies minimum allowable safety factor: 1.20 depending on height and slope. As the height increases by 5.0 m, the safety factors decrease by 0.04 while it tends to consistently reduce by approximately 20%, 30% and 40% after height goes to 10.0 m. As slope reduces by about 0.3, the safety factors increases by 0.4, which shows the rate of safety factors on slope grows by about 10%, 20% and 30% on lowering slope. When cohesion goes up by 10.0 kPa the safety factors increases by around 40% respectably while the angle of internal friction grows by $5^{\circ}$, it increases by about 8%. The rate of safety factors is identified as $Fs=3.86H^{-0.59}$, Fs = 0.43 s, Fs = 0.04 c, $Fs=0.02{\phi}$ depending on height, slope and shear strength. The safety factor with rainfall infiltration tends to increase by 18% compared to the condition of saturated surface on earth.

Spatio-temporal Variability of Soil Moisture within Remote Sensing Footprints in Semi-arid Area (건조지역 원격탐사 footprint 내 토양수분의 시공간적 변동성 분석)

  • Hwang, Kyotaek;Cho, Hun Sik;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.285-293
    • /
    • 2010
  • Soil moisture is a key factor to control the exchange of water and energy between the surface and the atmosphere. In recent, many researches for spatial and temporal variability analyses of soil moisture have been conducted. In this study, we analyzed the spatio-temporal variability of soil moisture in Walnut Gulch Experimental Watershed, Arizona, U.S. during the Soil Moisture Experiment 2004 (SMEX04). The spatio-temporal variability analyses were performed to understand sensitivity of five observation sites with precipitation and relationship between mean soil moisture, and its standard deviation and coefficient of variation at the sites, respectively. It was identified that log-normal distribution was superior to replicate soil moisture spatial patterns. In addition, precipitation was identified as a key physical factor to understand spatio-temporal variability of soil moisure based on the temporal stability analysis. Based on current results, higher spatial variability was also observed which was agreed with the results of previous studies. The results from this study should be essential for improvement of the remotely sensed soil moisture retrieval algorithm.

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results (원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구)

  • Kim, Jin-Ho;Yi, Na-Hyun;Lee, Hoo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2017
  • Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

Retrieval of Fire Radiative Power from Himawari-8 Satellite Data Using the Mid-Infrared Radiance Method (히마와리 위성자료를 이용한 산불방사열에너지 산출)

  • Kim, Dae Sun;Lee, Yang Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.105-113
    • /
    • 2016
  • Fire radiative power(FRP), which means the power radiated from wildfire, is used to estimate fire emissions. Currently, the geostationary satellites of East Asia do not provide official FRP products yet, whereas the American and European geostationary satellites are providing near-real-time FRP products for Europe, Africa and America. This paper describes the first retrieval of Himawari-8 FRP using the mid-infrared radiance method and shows the comparisons with MODIS FRP for Sumatra, Indonesia. Land surface emissivity, an essential parameter for mid-infrared radiance method, was calculated using NDVI(normalized difference vegetation index) and FVC(fraction of vegetation coverage) according to land cover types. Also, the sensor coefficient for Himawari-8(a = 3.11) was derived through optimization experiments. The mean absolute percentage difference was about 20%, which can be interpreted as a favourable performance similar to the validation statistics of the American and European satellites. The retrieval accuracies of Himawari FRP were rarely influenced by land cover types or solar zenith angle, but parts of the pixels showed somewhat low accuracies according to the fire size and viewing zenith angle. This study will contribute to estimation of wildfire emissions and can be a reference for the FRP retrieval of current and forthcoming geostationary satellites in East Asia.

Evaluation of Pollution Loads Removal Efficiency of Vegetation Buffer Strips Using a Distributed Watershed Model (분포형 유역모델을 이용한 식생여과대의 오염부하 저감효과 분석)

  • Park, Min-Hye;Cho, Hong-Lae;Koo, Bohn Kyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.369-383
    • /
    • 2016
  • A distributed watershed model CAMEL(Chemicals, Agricultural Management and Erosion Losses) was applied to a part of grazing grassland and vegetation buffer strip(VBS) located in Daegwanryeong, Korea. A set of scenario analyses was carried out for grassland and VBS with various combinations of VBS widths, soil textures and ground surface slopes. The simulation results indicate that annual direct runoff decreases with wider VBS and the removal efficiency of pollutants generally decrease with steeper slopes. The removal efficiency of sediment is not significantly different with VBS widths. For gentle and medium slopes($10^{\circ}$, $20^{\circ}$), the removal efficiency of TOC and TN is not significantly different with VBS widths. As for a steep slope($30^{\circ}$), however, the removal efficiency of TOC and TN increases with narrower VBS. The removal efficiency of TP is generally high except for medium and steep slope of sandy loam where the removal efficiency of TP increases with wider VBS. This result of TP is contrary to the results of TOC and TN due to the adsorption characteristics of phosphorus associated with fine sediment particles. It is expected that CAMEL can be used for evaluating the effectiveness of VBS to reduce non-point source pollution discharges.

Evaluation of Clear Sky Models to Estimate Solar Radiation over the Korean Peninsula (한반도의 일사량 추정을 위한 청천일 모델의 비교 평가)

  • Song, Ahram;Choi, Wonseok;Yun, Changyeol;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.415-426
    • /
    • 2015
  • Solar radiation under a clear sky is a important factor in the process by which meteorological satellite images are converted into solar radiation maps, and the quality of estimations depends on the accuracy of clear sky models. Therefore, it is important to select models appropriate to the purpose of the study and the study area. In this instance, complex models were applied using Linke turbidity, including ESRA, Dumortier, and MODTRAN, in addition to simple models such as Bourges and PdBV, which consider only the solar elevation angles. The presence of cloud was identified using the Communication, Ocean, and Meteorological Satellite and the Meteorological imager (COMS MI), and reference data were then selected. In order to calculate the accuracy of the clear sky models, the concepts of RMSE and MBE were applied. The results show that Bourges and PdBV produced low RMSE values, while PdBV had relatively steady RMSE values. Also, simple models tend to underestimate global solar irradiation during spring and early summer. Conversely, in the winter season, complex methods often overestimate irradiation. In future work, the cause of overestimation and other factors will be analyzed and the clear sky models will be adjusted in order to make them suitable for the Korean Peninsula.