• Title/Summary/Keyword: 지층두께

Search Result 81, Processing Time 0.028 seconds

Numerical Analysis for Carinthian Cut and Cover Tunnelling Method (카린시안 터널 공법의 기준 제안을 위한 수치 해석적 연구 - 국내 고속철도 복선터널 표준 단면을 기준으로 -)

  • Roh, Byoung-Kuk;Baek, Seung-Kyu;Cha, Min-Woong
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Carinthian cut and cover tunnelling method which combines cut & cover and NATM tunnel excavation method has increased the interest. Design and construction of arch concrete have been increased, but there is no applicable standards for arch concrete. Therefore, in this study numerical analysis was performed to propose standards for the Carinthian tunnelling method considering a variety of conditions such as ground conditions, tunnel overburden thickness, thickness of backfill, and overburden surface slope angle changes, linear regression equations derived to classify and organize a rational, economical, and safe Carinthian cut and cover tunneling method based proposed.

TBM segment lining section design of hypothetical subsea tunnels (가상 해저터널 TBM공법 적용 시 세그먼트 단면설계)

  • Choi, Jung-Hyuk;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • In this paper, the results of evaluation on the member forces in the virtual subsea tunnel lining segments and optimal thickness of the segment with changes in depth were presented. To evaluate member forces on the hypothetical subsea tunnelling cases were developed and the segmental lining member forces were calculated by performing structural analysis using the 2-Ring Beam model. Through a preliminary reinforcement design review of the cross-section using calculated member force, optimal reinforcement design was selected. Based on the results, the variations of member forces with construction conditions such as the cover depth and the hydraulic pressure are presented. In addition, optimum segment lining designs were developed for various tunnelling conditions.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Evaluation for efficiency of groundwater artificial recharge by artificial recharge system (인공함양방식에 따른 인공함양 효율성 평가)

  • Cha, Jang-Hwan;Lee, Jae Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.280-280
    • /
    • 2020
  • 지구 온난화 현상 및 이상기후로 지구환경 변화는 물환경 변화에 많은 영향을 미치고 있다. 특히, 지표수에 의존도가 높은 국내의 수자원 공급시스템은 지구환경 변화에 의한 강우 분포의 시간적, 공간적 불균질성에 대한 취약성이 높으며, 이에 기후변화에 따른 상대적 변동성이 적은 지하수자원의 활용 가능성이 높아지고 있다. 지하수 인공함양 기술은 강우, 지하수 및 하수 처리수 등의 잉여 수자원을 관정, 수로, 인공함양 분지 및 습지, 지하댐 등의 인공시설물을 활용하여 지하 대수층에 주입시킨 후 양질의 수자원을 확보하는 기술이다. 이번 연구에서는 수치해석을 활용하여 함양지역의 유역형상 및 지층경사, 대수층 두께, 체류시간, 수리상수 등 수리지질 인자를 고려한 인공함양 방식별 인공함양 효율성을 평가하고자 한다. 인공함양 방식은 수직관정 및 수로(Ditch)를 적용하였다.

  • PDF

Influence of Loss Function on Determination of Optimal Thickness of Consolidating Layer for Songdo New City (손실함수가 송도신도시의 최적 압밀층 두께 결정에 미치는 영향)

  • Kim, Dong-Hee;Ryu, Dong-Woo;Chae, Young-Ho;Park, Jung-Kyu;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.51-61
    • /
    • 2011
  • Spatial estimation of the thickness and depth of the geological profile has been regarded as an important procedure for the design of soft ground. A minimum variance criterion, which has often been used in traditional kriging techniques, does not always guarantee the optima1 estimates for the decision-making process in geotechnical engineering. In this study, a geostatistica; framework is used to determine the optimal thickness of the consolidation layer and the optimal area that needs the adoption of prefabricated vertical drains via indicator kriging and loss function. From the exemplary problem, different optimal estimates can be obtained depending on the loss function chosen. The design procedure and method considering the minimum expected loss presented in this paper can be used in the decision-making process for geotechnical engineering design.

Estimation of surficial sediment thickness using mid-frequency ocean acoustic bottom reflected signals measured in shallow water off Geoje island (거제 인근해역에서 측정된 중주파수 음향 해저면 반사 신호를 이용한 표층 해저면 두께 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Son, Su-Uk;Cho, Sungho;Hahn, Jooyoung;park, Joung-Soo;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.419-426
    • /
    • 2016
  • Measurements of bottom loss as a function of grazing angle (in range of $9{\sim}14^{\circ}$) at a frequency range of 4 ~ 8 kHz were conducted on an experimental site off Geoje island in October 2015. Geoacoustic inversion of the surficial sediment thickness is performed using the arrival time difference between the surficial layer and the sub-bottom layer reflected signal. To invert the thickness of surficial sediment, we used the grain size of $8{\sim}10{\phi}$ obtained by KIGAM (Korea Institute of Geoscience and Mineral Resources). The thickness of the surficial sediment was estimated to be 4 ~ 7 m. Finally, this inversion result was compared with the geoacoustic observation conducted by the KIOST (Korea Institute of Ocean Science & Technology) using sub-bottom profiler.

Resolution of Shallow Marine Subsuface Structure Image Associated with Acquisition Parameters of High-resolution Multi-channel Seismic Data (고해상 다중채널 탄성파탐사 자료취득변수에 따른 천부 해저지층영상의 해상도)

  • Lee Ho-Young;Koo Nam-Hyung;Park Keun-Pil;Yoo Dong-Geun;Kang Dong-Hyo;Kim Young-Gun;Seo Gab-Seok;Hwang Kyu-Duk;Kim Jong-Chon;Kim Ji-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.126-133
    • /
    • 2003
  • High-resolution shallow marine seismic surveys have been carried out for the resources exploration, engineering applications and Quaternary mapping. To improve the resolution of subsurface structure image, multichannel digital technique has been applied. The quality of the image depends on the vertical and horizontal resolution and signal to noise (S/N) ratio which are associated with the data acquisition parameters such as sample interval, common midpoint (CMP) interval and CMP fold. To understand the effect of the acquisition parameters, a test survey was carried out off Yeosu and the acquired data were analyzed. A 30 $in^3$ small air gun was used as a seismic source and 8 channel streamer cable with a 5 m group interval was used as a receiver. The data were digitally recorded with a shot interval of 2 s and sample interval of 0.1 ms. The acquired data were resampled with various sample intervals, CMP intervals and CMP folds. The resampled data were processed, plotted as seismic sections and compared each other. The analysis results show that thin bed structure with ${\~}1m$ thickness and ${\~}6^{\circ}$ slope can be imaged with good resolution and continuity and low noise using the acquisition parameters with a sample interval shorter than 0.2 ms, CMP interval shorter than 2.5 m and CMP fold more than 4. Because seismic resolution is associated with the acquisition parameters, the quality of the subsurface structure can be imaged successfully using suitable and optimum acquisition parameters.

Estimating Soil Thickness in a Debris Flow using Elastic Wave Velocity (탄성파 속도를 활용한 토석류 위험지역의 표토층 두께 결정)

  • Min, Dae-Hong;Park, Chung-Hwa;Lee, Jong-Sub;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.143-152
    • /
    • 2016
  • To estimate the stability of a debris flow it is necessary to know the mass of surface soil, cohesion, slope, and friction angle. Given that the mass of surface soil is a function of soil thickness and mass density, it is important to obtain reliable estimates of soil thickness across a wide area. The objective of this paper is to estimate soil thickness using the elastic wave velocity with a new standard velocity. Tests are performed in debris-flow hazard areas, after which four profiles are selected to obtain the elastic wave velocity. Dynamic cone penetration tests are carried out to find the soil thickness at 18 points. The elastic wave velocity shows the area consists of 3~4 layers, and soil thicknesses are predicted by utilizing the new standard. The elastic wave velocity and dynamic cone penetration tests yield large differences in soil thickness. Therefore, this study shows that the new standard is useful not only in estimating soil thickness but also in improving the reliability of estimates of soil thickness.

Demonstration of Developed Numerical Procedure to Describe 3-dimensional Long-term Behavior of the Pleistocene Marine Foundations (Pleistocene 해저지반의 3차원 장기거동 해석을 위해 개발한 수치해석 기법의 입증)

  • Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.5-14
    • /
    • 2020
  • Kansai International Airport (KIX) was opened in September 1994. Although 26 years have passed since the completion of the first island, long-term settlement is still in progress. This settlement occurs in the Pleistocene layer. For it is not easy to determine the permeability of the Pleistocene sand layer because the thickness and the degree of fine content in the horizontal direction are constantly changing. In addition, it is also a difficult to predict the interactive behavior of the ground due to the construction of the second phase island adjacent to it. In order to solve this problem, a two-dimensional finite element analysis considering elasto-viscoplastic was performed to evaluate the long-term deformation, including the interactive behavior of the alternating Pleistocene foundation due to the construction of two adjacent reclaimed islands. In general, two-dimensional analysis can be used when a section can represent the entire sections. However, Kansai Airport is an artificial reclaimed island so two-dimensional analysis cannot solve the problem such as the stress deformation in the corners of the island. Additionally, the structure of the actual sub-ground through physical exploration is non-homogeneity and its thickness is also not constant. Therefore, there are limitations for the two-dimensional analysis to explain the phenomena. That is, three-dimensional analysis is strongly required. Due to these demands, the author extended the existing two-dimensional program capable of elasto-viscoplastic analysis to three-dimensional and completed the verification of the three-dimensional program developed through one-dimensional consolidation analysis. In order to demonstrate the validity of the developed 3D program that has been verified, an analysis is performed under the same analysis conditions as the existing research using a two-dimensional program. The effectiveness of the developed 3D numerical analysis program was demonstrated by comparing the analysis results with the 2D results and actual measurement data.

Processing of Side Scan Sonar and SBP Data for the Artificial Reef Area (인공어초지역에 대한 사이드스캔소나와 SBP 탐사 자료처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Jang, Won-Il;Lim, Jong-Se;Yoon, Ji-Ho;Lee, Seong-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.192-198
    • /
    • 2009
  • Side scan sonar and SBP (sub-bottom profiler) play a very important role in the survey for seafloor imaging and sub-bottom profiling. In this study, we have acquired side scan sonar and SBP data from the artificial reef area. We applied digital image processing techniques to side scan sonar data in order to improve an image quality. For the enhancement of data quality and image resolution, we applied the typical seismic data processing sequence including gain recovery, muting, spectrum analysis, predictive deconvolution, migration to SBP data. We could easily estimate if artificial reef structures were settled properly and their distribution on the seafloor from the integrated interpretation of side scan sonar and SBP data. From the sampling analysis of seabed sediments, texture filtering of side scan sonar data and SBP data interpretation, we could evaluate the sediment type, distribution and thickness of seafloor sediments in detail.