• Title/Summary/Keyword: 지진 안전성

Search Result 450, Processing Time 0.034 seconds

Survey for Damage and Recovery of Communication Networks in Kobe's Earthquake (일본 고베 지진시의 통신망 피해 및 복구 현황 분석)

  • Song, Y.J.;Lee, J.W.;Lee, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.10 no.3 s.37
    • /
    • pp.57-67
    • /
    • 1995
  • 정보화 사회의 하부구조로서 중요성이 증대되고 있는 정보통신망은 단절없이 항상 안정적인 통신 서비스를 제공하기 위하여 비상재난을 대비한 통신망의 안전성 및 신뢰성을 확보하는 것이 중요하다. 본 고에서는 '95년 1월에 발생한 일본 고베 지방의 대지진으로 인한 정보통신 및 방송 분야의 피해 현황과 복구 대책을 살펴본다.

원자로 격납건물의 해석 및 설계

  • 정영운
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.4-12
    • /
    • 1995
  • 원자로 격납건물(Reactor Containment Bldg)은 정상가동시는 물론 냉각재상실사고(LOCA)를 포함하는 설계기준사고(DBA) 및 설계기준지진(DBE) 발생시 구조물 자체의 건전성 확보는 물론 주기기(NSSS Equipment)를 포함하는 안전관련 계통 및 기기를 안전하게 보호/지지하므로써 핵누출을 방지하여 발전소 종사자를 포함하는 국민의 재산과 생명을 보호하는 역할을 하는 원자력발전소에서 가장 중요한 구조물이다. 원자로 격납건물은 압력용기(Pressure Vessel : 설계내압 5 psi 이상인 용기)로 설계되는 격납용기와 1, 2차 차폐구조 등의 내부구조물로 구성되는데 이 중 본 소고에서는 격납용기의 해석 및 설계 그리고 구조건전성 시험 및 사용중검사에 대해서만 간략하게 기술한다.

  • PDF

A Study on the Seismic Response of Arch Structures Using Artificial Earthquake Ground Motions (아치구조물의 모의지진파 입력에 따른 지진응답특성에 관한 연구)

  • Jung, Chan-Woo;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2008
  • Seismic safety is more important for large spatial structure such as theaters, stadiums, gymnasiums since these structure are public goods. It is, however, difficult to understand behavior taking place when large spatial structure which has variety of structural system and shape receives seismic load. On this study, the natural vibration mode of arch structure which is main structural element of the large spatial structure, is checked. And then, when the artificial earthquake ground motion is applied to arch structure, it is more affective by long period component than magnitude of design acceleration spectrum.

  • PDF

Seismic Fragility Analysis of Curved Beam with I-Shape Section (I-Shape 단면을 갖는 곡선 보의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.379-386
    • /
    • 2018
  • Purpose: This study was to the fragility evaluation of I-shape curved beam structure subjected to strong ground motions including Gyeongju and Pohang earthquakes Method: In particular, to conduct the analytical model, ABAQUS and ANSYS platform was used in this study. Furthermore, the analytical model using 3D Finite Element Model (FEM) was validated, in comparison to the theoretical solutions at the location of 025L, 05L, and 0.75L in static loading condition. In addition, in order to evaluate the seismic fragility of the curved beam structure, 20 seismic ground motions were selected and Monte-Carlo Simulation was used for the empirical fragility evaluation from 0.2g to 1.5g. Result: It was interesting to find that the probability of the system failure was found at 0.2g, as using 190 MPa limit state and the probability of the failure using 390 MPa limit state was starting from 0.6g. Conclusion: This study showed the comparison of the theoretical solution with analytical solution on I-shaped curved beam structures and it was interesting to note that the system subjected to strong ground motions was sensitive to high frequency earthquake. Further, the seismic fragility corresponding to the curved beam shapes must be evaluated.

Seismic Performance Evaluation of Staggered Wall Structures Using FEMA P695 (FEMA P695를 이용한 격간벽 구조의 내진성능평가)

  • Lee, Joon-Ho;Kang, Hyun-Goo;Lee, Min-Hee;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.43-50
    • /
    • 2012
  • The FEMA P695 document proposed a methodology to evaluate the collapse safety of a structure and the validity of the seismic design coefficients. In this study, the seismic performance of six- and twelve-story staggered wall structures with a middle corridor was evaluated based on the FEMA P695 procedure. The analysis results of the prototype structures were compared with those of the structures with an increased coupling beam depth or an increased re-bar ratio of the coupling beams in order to investigate the effect of retrofit. The adjusted collapse margin ratios (ACMR) of the model structures obtained from incremental dynamic analyses turned out to be larger than the specified limit states of an ACMR of 20%, which implies that the analysis model structures have enough strength against design level earthquakes. It was also observed that the increase in the re-bar ratio of the coupling beams between the staggered walls was more effective in increasing the ACMR than an increase in the depth of the coupling beams.

Fragility Curve of PSC Box Girder Bridge using Isolator (면진 받침을 사용한 PSC Box Girder 교량의 손상도 곡선)

  • Lee, Jongheon;Kim, Woonhak;Seo, Sangmok
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.36-46
    • /
    • 2012
  • After the east Japan earthquake last March 2011, social interests are intensified in the area of increasing the earthquake resistant ability and the necessity of design method that can minimize the damage from earthquake. If bridges are damaged or collapsed, the social and economic effects are so severe that the evaluation of earthquake resistant ability becomes very important. The reviewing methods for earthquake resistant ability are many, but majority of these methods are deterministic. Thus, for the safety assessment of structures for earthquake, the method for evaluating fragility according to the stage of damage is necessary. In this paper, the fragility curves for PSC Box Girder bridge using LRB and RFPB are constructed for PGA, PGV, SA, SV, SI and the two isolators are compared.

A Shaking Table Test for Equipment Isolation in the NPP (II): FPS (원전기기의 면진을 위한 진동대 실험 II : FPS)

  • Kim, Min-Kyu;ZChoun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.79-89
    • /
    • 2004
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The purpose of this study is enhancement of seismic safety of equipment in the Nuclear Power Plant. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. As a result, these are founded that the vertical motion of seismic wave affect to the base isolation and the isolation effect decreased in case of near fault earthquake motion.

Seismic Response Analysis of Support-Isolated Equipment in Primary Structure (감진계통 지지부가 설치된 기기의 지진해석)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1992
  • The effectiveness of the support-isolation system for the equipment mounted on the primary structure is evaluated to reduce its responses under the earthquake load with considering the interaction between the primary structure and the internal equipment in this paper. A computer code (KBISAP) is developed to analyze the above system using the matrix condensation technique and constant average acceleration method. To evaluate the effectiveness of the support-isolation system, three systems are used in this study as follows: i) fixed-base structure with support-fixed equipment, ii) base-isolated structure with support-fixed equipment and iii) fixed-base structure with support-isolated equipment. The results of case study show that the acceleration of equipment with the support-isolation system is less than that of the support-fixed equipment in the base-isolated structure and significantly reduced the response compared with that of the support-fixed equipment in the fixed-base structure with the reduction factor of 8. The support-isolation system used in this study can reduce the response and also increase the safety margin of the important safety-related internal equipments.

  • PDF

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.