• Title/Summary/Keyword: 지진 모멘트

Search Result 275, Processing Time 0.023 seconds

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제석유저장탱크(KS B 6225)의 내진설계기준 개선 안)

  • Park, Jong-Ryul;O, Taek-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.544-552
    • /
    • 2002
  • Recommended seismic design guide for the flat bottom vortical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

Seismic Behavior of Steel Moment Connections with Different Structural Characteristics (철골 모멘트 연결부의 구조특성에 따른 지진 거동 연구)

  • Joh, Chang-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2002
  • The seismic behaviors of steel moment connections with different structural characteristics are investigated. The rupture index, which represents the fracture potential, is adopted to study the effect of concrete slab and the relative strength between the coin the beam, and Panel zone on the ductility of connections. The results show that the presence of slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on the beam but also on the column and panel zone. Therefore, the detrimental slab effects and the relative strength should be considered in the seismic design of the connection.

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제 석유 저장 탱크(KS B 6225)의 내진 설계 기준 개선 안)

  • Park, Jong-Ryul;Oh, Taek- Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.166-173
    • /
    • 2001
  • Recommended seismic design guide for the flat bottom vertical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

  • PDF

Seismic Design Program for Oil Storage Tank (액체저장탱크의 내진설계 프로그램 개발)

  • 박종률;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.551-555
    • /
    • 1997
  • IJnder earthquake excitations, the hydrodynamic pressure exerted on the flat bottom vertical-cylindrical oil storage tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea. zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described. And seismic design program for the tanks is presented.

  • PDF

Parmanent Grayvity Retaining Wall Displacment Due to Dynamic Loads (동적하중에 의한 중력식 옹벽의 영구변위)

  • 김성교
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-51
    • /
    • 1984
  • Mononobe-Okabe에 의해서 옹벽에 대한 동적 토압계산법이 개발된 이래 본론두중 옹벽의 과동에 의한 변위에 대해서는 많은 연구가 이루어졌으나 Mononobe-Okabe식이 원래 옹벽 자체의 관성을 고려치 아니하였고 또 동적 하중의 작용점을 제시하지 않으므로서 전도모멘트를 계산할 수 없게 하므로서 옹벽의 전도에 의한 변위에 대해서는 연구가 되지 아니하였다. 본 연구의 목적은 해석적 방법과 모형실험을 통해서 지진 및 폭파 등의 동적 하중에 의한 옹벽의 전도에 의한 변위를 고찰하고자 하는 바 그 결과를 요약하면 다음과 같다. 1. 활동에 대한 항복가속도가 있는 것과 마찬가지로 전도에 대한 항복가속도가 있다. 이 항복가속도는 옹벽의 안전율이 증가함에 따라 증가한다. 2. 이론치와 실험치는 경향으로 보아 일치한다. 실험치가 이론치보다 작은 것은 모형실험에서 옹벽측면과 컨테이너 사이의 마찰에 기인한 것으로 보아지며 마찰을 줄임으로써 이론치에 더 접근시킬 수 있을 것이다. 3. 옹벽의 회전각도의 크기는 지반가속도가 클수록, 옹벽저면이 작을수록 그리고 흙의 내부마찰각이 작을수록 크게 증가한다. 4. 실용적인 규격의 옹벽의 변위는 활동에 의한 것보다 전도에 의한 것이 훨씬 크며 전체 변위의 대부분을 차지한다. 5. 옹벽 상단의 횡적 변위는 옹벽 설계를 결정짓는 중요한 요소가 될 수 있다.

  • PDF

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Dynamic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections (반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체에 대한 동적해석)

  • Song Hwa-Cheol;Kim Woo-Nyon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.389-394
    • /
    • 2005
  • The additional moment occurs because the superstructures of VLFS are influenced by wave loads instead of earthquake loads. In order to reduce the additional moment, this study used the semi-rigid connections which lie between fully rigid and pinned. If the semi-rigid connections are used for superstructures of VLFS, the moment of beams can be reduced and more economical construction will be possible. This study aims to show the effect of wave loads on structure and the efficiency of the semi-rigid connections due to wave loads by analyzing the time history responses. The dynamic behaviors of the rigid frame are compared with those of the semi-rigid frame considering of static loads, wave loads and combination loads for a four-bay, three-story frames. The semi-rigid connection type is a steel tubular column with square external-diaphragm connections and the time history analysis is used for the dynamic responses. The additional moment responses due to wave loads increase $33\%$ in the rigid frame, $26\%$ in the semi-rigid frame with the spring model.

Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test (동적원심모형실험을 통한 대심도 가설 흙막이 벽체 지진 시 거동 연구)

  • Yun, Jong Seok;Han, Jin-Tae;Kim, Jong-Kwan;Kim, Dongchan;Kim, Dookie;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.119-135
    • /
    • 2022
  • This paper used dynamic centrifuge tests to examine the seismic response for a deep temporary retaining wall with four input motions of 100, 1,000, and 2,400 years of return periods. The centrifuge model was designed based on an actual deep excavation design with a 50 m maximum excavation depth. The model backfill was prepared with dry silica sand at a relative density of 55%, and the retaining wall was modeled as a 24.8 m height diaphragm wall supported by struts. Acceleration response was amplified at the backfill surface, top of the wall, and near bedrock. However, in the middle of the model, input motion was de-amplified. The member forces of the wall and strut induced by the seismic load, which excited, were compared with the member force at rest condition. The wall's maximum negative and positive moments were increased to 36% and 10% compared to the maximum moment at rest. The maximum axial force increases to 70% of the at rest axial force on the bottom strut. The equivalent static analysis using Mononobe-Okabe (M-O) and Seed-Whitman (S-W) seismic earth pressures were compared to the centrifuge results. Considering the bending moment, the analysis results with the M-O theory underestimates but that with the S-W theory overestimates.

Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis (비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명)

  • Park, Duhee;Lee, Tae-Hyung;Kim, Hansup;Park, Jeong-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • In a performance-based design, the structural safety is estimated from pre-defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

Correlation of Experimental ana Analytical Inelastic Responses of 1:12 Scale Irregular High-Rise RC Buildings (1:12축소 비정형 고층 RC 건물의 비선형거동에 대한 실험과 해석의 상관성)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.95-104
    • /
    • 2007
  • Three types of high-rise RC building structures having irregularity in the lower two stories were selected as prototypes and were performed nonlinear static analysis by using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. The first one has a symmetrical moment resisting frame (Model 1), the second has an infilled shear wall in the central frame (Model 2), and the third has an infilled shear wall only in one of exterior frames (Model 3). Fiber model, which consists of concrete and reinforcing bar represented from stress-strain relationship, is adapted used for simulate the nonlinearity of members, and MVLEM(Multi vertical linear element model) is used for simulate the behavior of wall. The analytical results are simulate the behavior of piloti stories well, for example, the stiffness and yield farce of piloti stories, the up-lift of wall and the variation of lateral stiffness of column due to the variation of axial forces. Overstrength of Model 2 and Model 3 are about 2 times larger than that of Model 1. The reason of the high oversttrength and ductility of Model 2 and Model 3 is that the conservative design of Model 2 and Model 3, whose beam and column sections are the same as those of Model 1. The ductilities of Model 1 and Model 3 are slightly larger than that of Model 1 and Model 3. Model 1 and Model 3 reached mechanism condition, whereas Model 2 failed to the shear failure of shear wall and the large axial forces in columns due to large overturning moment.