• Title/Summary/Keyword: 지진취약도평가

Search Result 76, Processing Time 0.027 seconds

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

Seismic Fragility Evaluation for Railway Bridge Structures using Results of a Safety Factor (철도교의 지진취약도 함수 도출을 위한 안전율평가 결과 이용)

  • Kim, Min-Kyu;Hahm, Dae-Gi;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This study is an evaluation of seismic fragility function using the HAZUS program for railway bridge systems, based on the results of previous research on seismic safety factor. First, a fragility function for each of the bridge members was evaluated according to the damage criteria and failure mode. Subsequently, bridge system fragility was evaluated using a fault tree to describe damage status. Finally, a fragility evaluation method for the bridge system was developed, based on the safety factor derived from the previous research.

Parameter Analysis of the Seismic Fragility Function for URM Buildings Using Capacity Spectrum Analysis (역량스펙트럼 해석에 의한 비보강 조적조 건축물의 지진취약도함수 매개변수 분석)

  • Lee, Jung-Han;Park, Min-Kyu;Kim, Hye-Won;Jung, Woo-Young;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.383-386
    • /
    • 2009
  • 본 연구는 HAZUS에서 제시하고 있는 비보강 조적조 건축물의 구조적 손상상태에 대한 지진취약도함수와 관련하여 층간변위율 및 스펙트럼 변위 등의 매개변수를 평가하고 또한 국내 상황에 적합한 기존 비보강 조적조 건축물의 지진취약도곡선의 도출을 목적으로 하였다. 국내 상황을 고려한 지진피해를 추정하기 위하여 먼저 기존 비보강 조적조 건축물의 현황파악 및 지진취약도함수 산출방법을 분석하였다. 일반적으로 HAZUS에서 제시하고 있는 지진취약도함수는 역량스펙트럼을 변환시킨 가속도-변위응답 스펙트럼법을 기본적으로 사용하는 상황으로 국내 기존 비보강 조적조 건축물에 대한 지진취약도함수 개발을 위하여 Midas GEN Ver.741 구조해석프로그램을 사용하여 실제 23개동의 비보강 조적조 건축물을 대상으로 역량스펙트럼 해석을 수행하였다. 연구결과를 통하여 지진취약도함수의 주요 매개변수인 손상상태별 층간변위율 및 스펙트럼 변위를 제시하였다.

  • PDF

Parametric Fragility Analysis of Steel Highway Bridges (매개변수를 고려한 강도로교의 취약도분석)

  • Choi, Eunsoo;Choi, Il-Yoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.334-343
    • /
    • 2003
  • 본 논문의 목적은 스팅베어링의 기존교량과 납-고무베어링(Lead-Rubber Bearing)으로 내진 보강된 교량에 대해서 갭(Gap)의 크기가 교량의 지진 취약도에 미치는 영향에 대해서 평가하였다. 이를 위해서 다경간 단순교(Multi-Span Simply Supported Bridge)와 다경간 연속교(Muti-Span Continuous Bridge)를 대상으로 취약도 분석을 실시하였다 또한 다양한 크기의 갭사이즈를 도입하여 해석을 실시하였다. 이를 통해서 갭사이즈의 변화가 각 교량의 구성품에 미치는 영향을 확률적으로 평가할 수 있었고, 합성된 취약도 곡선을 이용하여 최적의 갭사이즈를 확정할 수 있었다.

  • PDF

Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges (PSC-I 거더교의 지진취약도 평가를 위한 HAZUS 방법의 국내 적용성 연구)

  • Seo, Hyeong-Yeol;Yi, Jin-Hak;Kim, Doo-Kie;Song, Jong-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • To reduce the amount of seismic damage, several design codes are being improved considering the earthquake resistant systems, and many researches are being conducted to develop the earthquake damage evaluation techniques. This study develops the Korean seismic fragility function using the modified HAZUS method applicable to PSC-I girder bridges in Korea. The major coefficients are modified considering the difference between the seismic design levels of America and Korea. Seismic fragility function of the PSC-I girder bridge (one of the standard bridge types in Korea) is evaluated using two methods: numerical analysis and modified HAZUS method. The main coefficients are obtained about 70% of the proposed values in HAZUS. It is found that the seismic fragility function obtained using the modified HAZUS method closes to the fragility function obtained by conventional numerical analysis method.

Seismic Fragility Analysis of Curved Bridge Structure by Girder Section Shape (거더 단면형상 변화에 따른 곡선교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.626-633
    • /
    • 2019
  • Purpose: The primery objecting of this paper is to explore the seismics fragility of curved bridge based on the change of girder section. Method: The cross section of the bridge structure was constructed with I, T, and Box shapes and then, in order to perform the seismic fragility 24 seismic ground motions were used, including Gyeongju Pohang Earthquake. Result: Fist, T-Shape of the bridge strucrue was much fragility in terms of the stress on girder section, in comparison to the other shapes. The seismic fragilies of the structures with respect to displacement(drift ratio), however, were shown simialr. Conclusion: In other to wvaluation the seismic fragility of curved structure using different girder shapes, analytical models of the structure were constructed and then, the probability failure of box-shape girder was shown lower probability. In further, Parametric studies of curved structures must be conducted.

System-Level Seismic Fragility Evaluation of Bridge Considering Aging Effects (노후도를 고려한 교량의 시스템-수준 지진취약도 평가)

  • Kong, Sina;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • As a bridge ages, its mechanical properties and structural performance deteriorate, degrading its seismic performance during a strong earthquake. In this study, the aging of piers and bridge bearings was quantified in several stages and reflected in the analysis model, enabling the evaluation of the member-level seismic fragility of these bearings. Moreover, by assuming that the failure mechanism of a bridge system is a series system, a method for evaluating the system-level seismic fragility based on the member-level seismic fragility analysis result is formulated and proposed. For piers with rubber and lead-rubber bearings (members vulnerable to aging effects), five quantitative degrees of aging (0, 5, 10, 25, and 40%) are assumed to evaluate the member-level seismic fragility. Then, based on the result, the system-level seismic fragility evaluation was implemented. The pier rather than the bridge bearing is observed to have a dominant effect on the system-level seismic fragility. This means that the seismic fragility of more vulnerable structural members has a dominant influence on the seismic fragility of the entire bridge system.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

Seismic Fragility Analysis of Track-on Steel-Plate-Girder Railway Bridges Considering the Span Variability and System Damage (경간 구성 및 시스템 손상을 고려한 강판형 철도교의 지진 취약도 해석)

  • Park, Joo-Nam;Kim, Lee-Hyeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Seismic risk assessment of railway bridges is an important issue for a transportation network, because loss of functionality of railway bridges could result in severe disruption of the railway line, as no redundant routing systems generally exist. Although many studies have been conducted by numerous researchers regarding fragility analyses of bridge structure, little or no studies have been done for fragility analyses of a class of bridge structures considering their geometric variability. This study performs a fragility analysis for Track-on Steel-Plate-Girder (TOSPG) railway bridges in Korea considering their span variability. Seismic fragility curves are developed for a series of bridges with different spans varying from 2 to 15. At last, the fragility curves for the whole TOSPG bridges in Korea are also developed using the total probability theorem. This study is expected to effectively contribute to the seismic risk assessment of railway lines, where a number of bridges are present.

Effects of the Recorded Earthquake Data on the Seismic Fragilities of Korean Nuclear Power Plant Structures (한반도 기록지진의 특성이 원자력발전소 구조물의 지진취약도에 미치는 영향 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Seismic fragility analysis (SFA) has been utilized to evaluate the actual seismic capacity of structure and equipment in nuclear power plants (NPP). This paper briefly introduces an improved method for evaluating seismic fragilities of components of NPP's in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. Some significant differences between the Newmark's spectra and the recorded spectra as a site-dependent spectra are assessed. Several comparative SFA's have been performed to evaluate the effects of the recorded earthquakes on the seismic capacities of Korean NPP structures. The results showed that SFA using the Newmark's spectra might over estimate the actual seismic capacities of Korean facilities.