• Title/Summary/Keyword: 지진지반운동

Search Result 177, Processing Time 0.035 seconds

A Study of Site-Specific Design ground Motions in Earthquake-Resistant Design for Geotechnical Structures (지반구조물 내진설계시 부지특성을 고려한 설계 지반운동연구)

  • 권수영;박인준
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.37-46
    • /
    • 2000
  • 본 논문에서는 부지특성을 고려한 설계지반운동의 산정방법을 연구하였으며 그 해석결과를 지반 구조물의 내진설계에 적용하는 방법을 제안하였다 지진응답 해석시 사용되는 설계응답스펙트럼과 설계시간 이력등의 입력운동의 통제점 위치가 지반구조물 내진설동 지층내 암반운동 그리고 노두운동을 사용하는 방법으로 나눌 수 있고 이에 따라 작용 설계지진운동이 변화하므로 지반구조물의 경계조건에 적합한 방법을 사용하여야 한다.

  • PDF

Failure Probability of Nonlinear SDOF System Subject to Scaled and Spectrum Matched Input Ground Motion Models (배율조정 및 스펙트럼 맞춤 입력지반운동 모델에 대한 비선형 단자유도 시스템의 파손확률)

  • Kim, Dong-Seok;Koh, Hyun-Moo;Choi, Chang-Yeol;Park, Won-Suk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • In probabilistic seismic analysis of nonlinear structural system, dynamic analysis is performed to obtain the distribution of the response estimate using input ground motion time histories which correspond to a given seismic hazard level. This study investigates the differences in the distribution of the responses and the failure probability according to input ground motion models. Two types of input ground motion models are considered: real earthquake records scaled to specified intensity level and artificial input ground motion fitted to design response spectrum. Simulation results fir a nonlinear SDOF system demonstrate that the spectrum matched input ground motion produces larger failure probability than those of scaled input ground motion due to biased responses. Such tendency is more remarkable in the site of soft soil conditions. Analysis results show that such difference of failure probability is due to the conservative estimation of design response spectrum in the range of long period of ground motion.

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

중약진 지역에서 지진격리장치를 사용한 교량의 내진 보강

  • 김용길;권기준
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.223-228
    • /
    • 2000
  • 지진격리교량은 강진지역의 지반운동과 구조물의 거동에 근거한 내진설계 개념을 바탕으로 설계되었다. 그러나 지반운동의 특성과 구조물의 거동에 있어서 한반도와 같은 중약진 지역과 지각변동운동이 활발한 강진지역은 큰 차이를 보이고 있다. 따라서 중약진 지역의 내진설계에서는 지반운동의 특성이 반영되어야 할 필요가 있으며, 특히, 지진격리교량의 경우에는 교각의 연성 등 중약진 지역의 구조물의 거동특성이 반영되어야 한다. (중략)

  • PDF

단층파쇄대를 통과하는 경안대교의 부지효과를 고려한 지진응답해석

  • 조의경;이장석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.646-655
    • /
    • 2002
  • 장대 교량이 위치한 지반에서 지진에 의한 지반 운동은 교량의 길이 방향으로 공간적인 변화를 일으킨다. 지형 변화나 지반 매질의 물성 변화가 있는 비균질한 지반에서 지반 운동의 진폭과 주파수 성분은 변화하고 이 부지 효과(site effect)는 교량의 지진 응답에 지배적인 영향을 미치며 그 영향은 파전파 효과(wave passage effect)에 의한 지반 각 지점의 지진파 도달시간 차이나 비균질성이 큰 지반에서 파의 다중 반사, 굴절에 의한 영향보다 크다[1]. (중략)

  • PDF

Estimation of Seismic Responses of Hualien LSST Model By the Substructure Method of Soil-Structure Inraction Analysis (Hualien 대형지진시험 모델의 지진응답해석)

  • 조양희;박형기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.59-68
    • /
    • 1997
  • Seismic responses of the Hualien large scale seismic test model on a layered soil site are estimated for three recorded earthquakes with different level of peak acceleration using two different approaches of soil-structure interaction analysis. The analysis results are then compared and evaluated with the recorded. The method adopted for the analysis is based on substructuring method using a lumped parameter model in both the frequency and time domain. The study results indicate that the proposed method can reasonably estimate the earthquake responses of a soil-structure interaction system of r engineering purposes if the techniques of defining input motion and modeling of the backfilled soil are prudently selected.

  • PDF

화련 대형내진모델시험 구조물의 지진응답해석

  • 현창헌;이성규;윤철호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.471-476
    • /
    • 1997
  • 본 논문에서는 국제공동연구로 수행중인 화련 대형내진모델시험 사업에서 계측지진기록을 이용한 모델구조물의 지진응답해석을 수행한 결과를 기술하였다. 지진응답해석은 3차원 유연체적 부구조법을 사용하는 지반-구조물 상호작용해석 전용 전산프로그램인 SASSI를 이용하여 수행하였으며, 지반 특성은 지반조사 결과 제시된 두 가지 지반모델과 계측지진 지반운동으로부터 직접 유도해 낸 지반모델의 지반 특성값을 사용하였다. 또한 본 연구에서는 지반과 구조물 특성값의 변화에 대한 구조물 지진응답의 민감도 및 지반의 비선형 특성이 구조물의 응답에 미치는 영향을 분석하였다.

  • PDF

Duration Effect of the Ground Motion on Structures (지반거동의 지속시간이 건물에 미치는 영향)

  • 김희철
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.91-96
    • /
    • 1992
  • Earthquake resistant design is evolutionary, and, although great progress has been made since seismic design was made mandatory by building codes, it is still not completely understood. In this paper, a 10 story steel building is analyzed and its results are compared by applying two different actual ground motions to the structure. 12 sets of Loma Prieta, California, earthquake data which occurred in 1989, and recorded 7.1 on the Richter scale and 9 sets of Valparaiso, Chile, earthquake data which occurred in 1985, and recorded 7.8 on the Richter scale were scaled to zone 2B level of UBC-88. By applying earthquake ground motions which had similar Richter scale magnitude, it was found that the Chile earthquake which had long duration of ground motion affected about twice bigger than that of California earthquake which had relatively short duration of ground motion. In addition to the peak ground motion, the duration of the ground motion is a very important factor in structural design.

  • PDF

Seismic Margin Assessment of Concrete Retaining Walls (콘크리트 옹벽의 지진여유도 평가)

  • Park, Duhee;Baeg, Jongmin;Park, Inn-Joon;Hwang, Kyeungmin;Jang, Jungbum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.7
    • /
    • pp.5-10
    • /
    • 2019
  • In recent Gyeongju and Pohang earthquakes, motions that exceed the design ground motion were recorded. This has led to adjustments to the design earthquake intensity in selected design guidelines. An increment in the design intensity requires reevaluation of all associated facilities, requiring extensive time and cost. Firstly, the seismic factor of safety of built concrete retaining walls are calculated. Secondly, the seismic margin of concrete retaining walls is evaluated. The design sections of concrete walls built at power plants and available site investigation reports are utilized. Widely used pseudo-static analysis method is used to evaluate the seismic performance. It is shown that all concrete walls are safe against the adjusted design ground motion. To determine the seismic margin of concrete walls, the critical accelerations, which is defined as the acceleration that causes the seismic factor of safety to exceed the allowable value, are calculated. The critical acceleration is calculated as 0.36g~0.8g. The limit accelerations are significantly higher than the design intensity and are demonstrated to have sufficient seismic margin. Therefore, it is concluded that the concrete retaining walls do not need to be reevaluated even if the design demand is increased up to 0.3g.

Study on the Earthquake Ground Motion Attenuation Characteristics in Korea and Japan using 2005 Fukuoka Earthquake Records (2005년 Fukuoka 지진기록을 이용한 국내 및 일본의 지진동 감쇄 특성 평가)

  • Choi, In-Kil;Nakajima, Masato;Choun, Young-Sun;Ohtori, Yasuki;Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.45-54
    • /
    • 2006
  • The characteristics of the ground motion attenuation in Korea and Japan were estimated using the earthquake ground motions recorded at the equal distance observation stations by KMA, K-NET and KiK-net of Korea and Japan. The ground motion attenuation equations proposed for Korea and Japan were evaluated by comparing the predicted value fer the Fukuoka earthquake with the observed records. The predicted value from the attenuation equations shows good agreement with the observed records and each other. It can be concluded from this study that the ground motion attenuation equations developed for Japan can be used usefully for the prediction of a ground motion from far field earthquake more than 200 km and for the evaluation of the far field ground motion attenuation equations proposed fer Korea.