• Title/Summary/Keyword: 지진응답

Search Result 1,199, Processing Time 0.019 seconds

Control of Asymmetrical Tall Buildings under Wind Loading (비대칭 고층건물의 내풍 및 제진 해석)

  • 민경원;김진구;조한욱
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • In the design of tall building system, the wind loading can be more dominant factor than earthquake loading, and thus, it is important to check the stability and human comfort against wind. Experimental wind tunnel test is usually performed to predict wind behavior of a tall building, however, the test is not cost-effective in the preliminary stage for various structural models of tall building systems. In this regard, the study is focused on the numerical wind analysis of the tall building with and without tuned mass dampers based on the three dimensional model of wind loads and building behavior. As a numerical result, an asymmetrical 102-story tall building is presented to show the results of root mean squares of build responses with and without tuned mass dampers.

  • PDF

A Study on Characteristics and Dynamic Response Spectrum of Near Fault Ground Motions (근거리지진의 특성과 동적응답스펙트럼에 관한 연구)

  • Bang, Myung-Seok;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.143-151
    • /
    • 2005
  • In this study, it is demonstrated that how the effect of the Near Fault Ground Motion affects the response of the structure. Considering the general characteristic of Near Fault Ground Motion the characteristics of Near Fault Ground Motions is analysed by elastic response spectrums, and the inelastic response spectrum is evaluated with the ductility and the yield strength to consider the inelastic behavior which couldn't be simulated through the elastic response spectrum. The result of this study shows that the effect of Near Fault Ground Motion should be considered in the long period range of long span structures but the domestic seismic design code was developed based on Far Fault Ground Motions, so the effects of Near Fault Ground Motions, which is very serious especially in large structures with a long period, are not considered. Therefore, the effect of the Near Fault Ground Motion has to be examined especially in the seismic performance evaluation of long period structure.

Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures (평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석)

  • Park, Hyo-Sun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

A Study on Optimum Mass of TMD for Improving Seismic Response Control Performance of Retractable-Roof Spatial Structure (개폐식 대공간 구조물의 지진 응답 제어 성능 향상을 위한 TMD의 최적 질량에 관한 연구)

  • Kim, Dong-Hyung;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the retractable-roof spatial structure was chosen as the analytical model and a tuned mass damper (TMD) was installed in the analytical model in order to control the seismic response. The analysis model is mainly consisted of runway trusses (RT) and transverse trusses (TT), and the displacement response was analyzed by installing TMD on those trusses. The mass of the single TMD which is installed in the analytical model was set to 1% of the total structure mass and the total TMD mass ratio was set to be 8% or 6%. In addition, the mass of a single TMD was varied depending on the number of installations. As a result of analyzing the optimal number of installations of TMD, the displacement response was reduced in all cases compared to the case without TMD. Above all, the case with 8 TMDs was the most effective in reducing he displacement response. However, in this case, as the load on the upper structure of the retractable-roof spatial structure increases, the total mass ratio of TMD was maintained and the number of TMDs was increased to reduce the mass ratio of one TMD.

Risk Assessment of Offshore Wind Turbine Support Structures Considering Scouring (세굴을 고려한 해상풍력터빈 지지구조물 위험도 평가)

  • Kim, Young Jin;Lee, Dae Yong;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.524-530
    • /
    • 2020
  • The risk of offshore wind turbine support structures by scour has been proposed. The proposed utilize probabilities of scour depths and fragilities according to scour depth and a modification of a seismic risk analysis method. The probability distribution of scour depth was calculated using a equation which is suitable to consider marine environmental conditions such as significant wave height, significant period, and current velocity, and dynamic analysis was performed on an offshore wind turbine equipped with an suction bucket to find fragility. Then, the risk of offshore wind turbine support structure considering scour can be found by integrating the scour probability and the fragility.

Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures (비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

Seismic Response Analysis of Dome-Shaped Large Spatial Structures According to TMD Installation (TMD 설치에 따른 돔 형상 대공간 구조물의 지진응답분석)

  • Ku, Seung-Yeon;Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Comparative Study on Seismic Performance of Viscously Damped Self-Centering SDOF Systems with Elasto-Plastic SDOF Systems (점성 감쇠기를 가진 셀프 센터링 단자유도 시스템과 탄소성거동의 단자유도 시스템의 내진성능 비교에 관한 연구)

  • Kim, Hyung-Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.553-561
    • /
    • 2010
  • The purpose of this paper is to analytically find the approximate supplement damping ratio of the viscous damper installed in self-centering (SC) single-degree-of-freedom (SDOF) systems with maximum displacements that are similar to those of elasto-plastic (EP) SDOF systems. The behavior of an SC SDOF system under harmonic cyclic loading was first described. Then an analytical model that can capture the behavior of the viscously damped SC SDOF system was introduced. Analysis parameters that characterize the hysteresis of the EP and SC SDOF systems were chosen, and nonlinear time-history analyses were performed using 20 historical accelerograms. Most of the SC SDOF systems with viscous dampers with approximately 10-15% damping ratios presented mean maximum displacement values that were similar to those of the EP SDOF systems. To investigate in detail the seismic performance of both systems, three EP SDOF systems and six corresponding SC SDOF systems were selected. The analyses showed that all the SC SDOF systems eliminated the residual displacements after the end of their shaking, and that the SC SDOF systems with 15% damping ratios performed better than the EP SDOF systems in terms of maximum displacement and acceleration response.

Evaluation of Accuracy of Modified Equivalent Linear Method (수정된 등가선형해석기법의 정확성 평가)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Duhee;Kim, Kwangkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.5-20
    • /
    • 2010
  • One-dimensional equivalent linear site response analysis is widely used in practice due to its simplicity, requiring only few input parameters, and low computational cost. The main limitation of the procedure is that it is essentially a linear method, in which the time dependent change in the soil properties cannot be modeled and constant values of shear modulus and damping is used throughout the duration of the analysis. Various forms of modified equivalent linear analyses have been developed to enhance the accuracy of the equivalent linear method by incorporating the dependence of the shear strain with the loading frequency. The methods are identical in that it uses the shear strain Fourier spectrum as the backbone of the analysis, but differ in the method in which the strain Fourier spectrum is smoothed. This study used two domestically measured soil profiles to perform a series of nonlinear, equivalent linear, and modified equivalent linear site response analyses to verify the accuracy of two modified procedures. The results of the analyses indicate that the modified equivalent linear analysis can highly overestimate the amplification of the high frequency components of the ground motion. The degree of overestimation is dependent on the characteristics of the input ground motion. Use of a motion rich in high frequency contents can result in unrealistic response.