• Title/Summary/Keyword: 지진손상

Search Result 378, Processing Time 0.023 seconds

Fragility Curve of PSC Box Girder Bridge using Isolator (면진 받침을 사용한 PSC Box Girder 교량의 손상도 곡선)

  • Lee, Jongheon;Kim, Woonhak;Seo, Sangmok
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.36-46
    • /
    • 2012
  • After the east Japan earthquake last March 2011, social interests are intensified in the area of increasing the earthquake resistant ability and the necessity of design method that can minimize the damage from earthquake. If bridges are damaged or collapsed, the social and economic effects are so severe that the evaluation of earthquake resistant ability becomes very important. The reviewing methods for earthquake resistant ability are many, but majority of these methods are deterministic. Thus, for the safety assessment of structures for earthquake, the method for evaluating fragility according to the stage of damage is necessary. In this paper, the fragility curves for PSC Box Girder bridge using LRB and RFPB are constructed for PGA, PGV, SA, SV, SI and the two isolators are compared.

Structural Joint damage Estimation by Neural Networks Incorporating Advanced Techniques (신경망기법을 이용한 구조물 접합부의 손상평가)

  • 이진학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.300-307
    • /
    • 1999
  • 신경망기법을 이용한 구조물접합부의 손상평가기법을 제안하였다. 신경망기법의 성능을 개선하기 위하여 노이즈첨가학습을 수행하였으며 효과적인 손상평가를 위하여 부분구조추정법 및 data perturbation scheme을 도입하였다. 10층 프레임구조물에 대한 수치해석과 2층 프레임구조물에 대한 실험연구를 통하여 제안기법을 검증하였다 계측지점이 부분구조로 제한되고 계측자료가 노이즈를 포함하는 경우에는 제안기법이 효과적으로 적용될수 있음을 알 수 있었으며 실험을 통하여 실제 구조물에 대한 제안기법의 적용성을 평가힐 수 있었다.

  • PDF

Parameter Analysis of the Seismic Fragility Function for URM Buildings Using Capacity Spectrum Analysis (역량스펙트럼 해석에 의한 비보강 조적조 건축물의 지진취약도함수 매개변수 분석)

  • Lee, Jung-Han;Park, Min-Kyu;Kim, Hye-Won;Jung, Woo-Young;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.383-386
    • /
    • 2009
  • 본 연구는 HAZUS에서 제시하고 있는 비보강 조적조 건축물의 구조적 손상상태에 대한 지진취약도함수와 관련하여 층간변위율 및 스펙트럼 변위 등의 매개변수를 평가하고 또한 국내 상황에 적합한 기존 비보강 조적조 건축물의 지진취약도곡선의 도출을 목적으로 하였다. 국내 상황을 고려한 지진피해를 추정하기 위하여 먼저 기존 비보강 조적조 건축물의 현황파악 및 지진취약도함수 산출방법을 분석하였다. 일반적으로 HAZUS에서 제시하고 있는 지진취약도함수는 역량스펙트럼을 변환시킨 가속도-변위응답 스펙트럼법을 기본적으로 사용하는 상황으로 국내 기존 비보강 조적조 건축물에 대한 지진취약도함수 개발을 위하여 Midas GEN Ver.741 구조해석프로그램을 사용하여 실제 23개동의 비보강 조적조 건축물을 대상으로 역량스펙트럼 해석을 수행하였다. 연구결과를 통하여 지진취약도함수의 주요 매개변수인 손상상태별 층간변위율 및 스펙트럼 변위를 제시하였다.

  • PDF

Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading (주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • The failure mode of piping systems due to seismic loads is the low-cycle fatigue failure with ratcheting, and it was found that the element in which nonlinear behavior is concentrated and damage occurs is the elbow. In this study, to quantitatively express the failure criteria for a pipe elbow of SCH40 3-inch carbon steel under low-cycle fatigue, the limit state was defined as leakage, and the in-plane cyclic loading test was conducted. For the carbon steel pipe elbow, which is the vulnerable part to seismic load of piping systems, the damage index was represented using the moment-deformation angle relationship, and it was compared and analyzed with the damage index calculated using the force-displacement relationship. An attempt was made to quantitatively express the limit state of the carbon steel pipe elbow involving leakage using the damage index, which was based on the dissipated energy caused by repeated external forces.

A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis (비선형동적해석에 의한 2016년 경주지진에서 지진피해를 받은 R/C 건물의 내진성능에 관한 연구)

  • Jung, Ju-Seong;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • On September 12, 2016, the Gyeongju District was strongly shaken with M=5.8, which was the largest one since measured by the actual seismometer in Korea, and some buildings were damaged. The field survey of reinforced concrete school buildings in the affected area was carried out, and their residual seismic capacities(R) were estimated based on the Japanese Standard for post-earthquake damage evaluation. In this study, the M school, which was greatly damaged by the 2016 Gyeongju Earthquake, was selected, and its damage level was evaluated on the basis of the Japanese Standard. The seismic capacity of the M school was also evaluated using the nonlinear dynamic analysis, and relationships between its damage level and seismic capacity was also conducted to investigate causes of earthquake damage. The damage level of M school was classified into light with R=88.2%. The result of the dynamic analysis agreed reasonably well with the damage of M school sustained by the 2016 Gyeongju earthquake. This will provide fundamental data for earthquake preparedness measures, such as the seismic rehabilitation of low-rise reinforced concrete buildings in Korea.

Evaluation of Seismic Responses for Building in Moderate Seismicity Regions Considered Vertical Earthquake Ground Motions (지진지반운동의 수직성분을 고려한 증진지역 건축구조물의 지진응답평가)

  • Han, Duck-Jeon;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2009
  • Recent earthquake, such as the Northridge(1994), the Kobe(1995) and the Izmit(1990) earthquakes, gave serious damage in various buildings and bridges by the vertical seismic component. Most of the seismic designs neglect the vertical seismic component for usual frame structures. The purpose of this study is to evaluate the effects of the vertical seismic component and to compare the axial force of columns and plastic rotation angle of the analytical models in these effects. The vertical seismic component produced a large increment of axial force in columns. And the vertical seismic component caused a significant increase of the damage in the columns. As analysis result, increase of axial force cause the damage of columns and give possibility of story collapse mechanism of the structure system. Therefore, area that near fault ground motion is expected may be consider the effect of vertical component of seismic ground motions.

  • PDF

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

Earthquake Damage Assessment of Buildings in Urban Area using Disaster Management Platform (재난관리플랫폼을 이용한 도심지 건물군의 지진피해평가)

  • Jang, Sung-Hyun;Kwon, Dong-Hee;Hwang, Chan-Gyu;Choi, Soo-Young;Chey, Min-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.25-31
    • /
    • 2019
  • Because of its physical characteristics, earthquake has a great impact on a wide area in a short time, so it needs a resilience based seismic countermeasures to restore the community function. For this reason, in this study, the seismic damages of urban buildings were assessed stochastically by virtual earthquakes using public data information and disaster management program(Ergo-EQ). A geographical map reflecting geological characteristics of the target area was created with the buildings and topographic data in Dalseo-gu, Daegu City. In addition, an integrated database including building characteristics was modified to be linked with the Ergo-EQ program. The seismic damages for the buildings were evaluated through the exceedance probability of four different damage levels. From the damage results, it can be identified not only the seismic damage of each building, but also the major factors affecting earthquake damage.

Fragility Curves of Seismic Retrofitted Concrete Bridges (내진보강된 콘크리트 교량의 손상도 곡선)

  • Kim, Sang-Hoon;Kim, Doo-Kie;Seo, Hyeong-Yeol;Kim, Jong-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.203-210
    • /
    • 2004
  • The fragility curves of seismic retrofitted bridges by steel jacketing at bridge columns and restrainers at expansion joints after the 1994 Northridge earthquake are developed. Fragility curves are represented by lognormal distribution functions with two parameters (median and log-standard deviation) and developed as a function of peak ground acceleration(PGA). Two parameters in the lognormal distribution are estimated by the maximum likelihood method. The sixty ground acceleration time histories for Los Angeles area developed for FEMA SAC project are used for the dynamic analysis of bridges. The comparison of fragility curves of the bridges before and after column retrofit demonstrates that the improvement of the bridges with steel jacketing on the seismic performance is excellent for the damage states defined in this study. The comparison of fragility curves of the bridges before and after the installation of restrainers at expansion joints also shows the improvement in the seismic performance of restrained bridges for the severe damage state.

Fragility Analysis Method Based on Seismic Performance of Bridge Structure considering Earthquake Frequencies (지진 진동수에 따른 교량의 내진성능기반 취약도 해석 방법)

  • Lee, Dae-Hyoung;Chung, Young-Soo;Yang, Dong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.187-197
    • /
    • 2009
  • This paper presents a systematic approach for estimating fragility curves and damage probability matrices for different frequencies. Fragility curves and damage probability indicate the probabilities that a structure will sustain different degrees of damage at different ground motion levels. The seismic damages are to achieved by probabilistic evaluation because of uncertainty of earthquakes. In contrast to previous approaches, this paper presents a method that is based on nonlinear dynamic analysis of the structure using empirical data. This paper presents the probability of damage as a function of peak ground acceleration and estimates the probability of five damage levels for prestressed concrete (PSC) bridge pier subjected to given ground acceleration. At each level, 100 artificial earthquake motions were generated in terms of soil conditions, and nonlinear time domain analyses was performed for the damage states of PSC bridge pier structures. These damage states are described by displacement ductility resulting from seismic performance based on existing research results. Using the damage states and ground motion parameters, five fragility curves for PSC bridge pier with five types of dominant frequencies were constructed assuming a log-normal distribution. The effect of dominant frequences was found to be significant on fragility curves.