• Title/Summary/Keyword: 지진관측소

Search Result 137, Processing Time 0.037 seconds

Epicenter Estimation Using Real-Time Event Packet of Quanterra digitizer (Quanterra 기록계의 실시간 이벤트 패킷을 이용한 진앙 추정)

  • Lim, In-Seub;Sheen, Dong-Hoon;Shin, Jin-Soo;Jung, Soon-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.316-327
    • /
    • 2009
  • A standard for national seismological observatory was proposed on 1999. Since then, Quanterra digitizer has been installed and is operating on almost all of seismic stations which belong to major seismic monitoring organizations. Quanterra digitizer produce and transmit real-time event packet and data packet. Characteristics of event packet and arrival time of each channel's data packet on data center were investigated. Packet selection criteria using signal to noise ratio (hereafter SNR) and signal period from real-time event packet based on 100 samples per second (hereafter sps) velocity data were developed. Estimation of epicenter using time information of the selected event packet were performed and tested. A series of experiment show that event packets were received approximately 3~4 second earlier than data packets and the number of event packet was only 0.3% compare to data packets. Just about 5% against all of event packets were selected as event packet were related P wave of real earthquake. Using the selected event packets we can estimate an epicenter with misfit less than 10 km within 20 sec for local earthquake over magnitude 2.5.

Analysis about Seismic Displacements Based on GPS for Management of Natural Disaster (자연재난 관리를 위한 GPS 기반의 지진재해 분석)

  • Park, Joon-Kyu;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • On March 11, 2011, an 9.0-magnitude earthquake occurred near the northeastem coast Japanese. It was the largest earthquake that hit Japan since the beginning of modern seismometry. The earthquake occurred 179km east of the Sendai, Miyagi Prefecture, leaving about 27,000 of people confirmed dead, injured or missing due to the earthquake and tsunami. In this study, crustal Deformation in Mizusawa, Tsukuba and Usuda station were calculated based on GPS data in IGS station of Japan. The observation data were processed by precise point positioning and relative-positioning method using on-line GPS data processing services and a high precision scientific GPS/GLONASS data processing software. The coseismic displacements in IGS stations before and after the earthquake were analyzed using kinematic precise point positioning method, and the crustal deformation of the areas before and after the earthquake were precisely calculated using the relative-positioning method. The results of the study calculated precise coordination that the RMSE is maximum ${\pm}0.003m$, respectively and showed that Mizusawa station moved 2.6m southeast by the earthquake.

Earthquake-related Data Selection using Event Packets (이벤트 패킷을 이용한 지진관련 데이터의 추출)

  • Lim, In-Seub;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.59-68
    • /
    • 2008
  • In this paper, we propose a method for selecting meaningful event packets from which can receive before anything else from seismograph according to allotted priority and estimate epicenter using selected packets. Event packets which received from each station will be evaluated with their onset time, signal period and SNR by statistical method and will be selected packets related with real earthquake's P-wave. And estimated epicenters using by 'Application of epicenter estimation using first P arrivals'. With local earthquakes occurred in 2007 were announced by KMA, collected event packets on earthquake happened date and selected p-wave related packets and estimated epicenter. After result of experiment, if an earthquake occurred within seismic networks, can estimate epicenter with small misfits just after event packets arrived from above 4 stations. Considering average distance of each station, in case of using all stations' data include other organization, can estimate and alert rapidly. It show this method is useful when construct a local earthquake early warning system later.

  • PDF

Proposal and Evaluation of Ground Response Spectrum Estimation Algorithm based on Seismic Observation Data (지진 관측데이터 기반 지반응답스펙트럼 추정 알고리즘 제안 및 평가)

  • Ahn, Jin-Hee;Jeong, Jin-Woo;Hong, Yu-Chan;Park, Jae-Bong;Choi, Hyoung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.13-22
    • /
    • 2019
  • In order to evaluate the earthquake damage level of small and medium - sized bridges without earthquake monitoring system, we proposed an algorithm for estimating the seismic force at the target bridge location using the ground acceleration data from the earthquake observatories near the structure. In general, response spectrum analysis, which is the most widely used dynamic analysis method to design and evaluate the structural system numerically is required a response spectrum to determine the dynamic loading. In this study, selection methods of the three closest observatories from the target structure and estimation method of ground response spectrum at arbitrary locations are developed. The proposed method can consider the distance and phase between the target bridge and the seismic station and from the relationship between the acceleration amplitudes and the location of the selected seismic station, the earthquake loading of the target bridge can be determined. The proposed algorithm is estimated to be more conservative than the response spectrum evaluated by actual earthquake data.

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

2-D Forward Modeling on an Explosion Data in Korea (한반도의 폭파자료에 대한 2-D 수치 모델링 연구)

  • Kang, Ik-Bum;Cho, Kwang-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.137-139
    • /
    • 2007
  • To enhance capability on discerning local and regional seismic phases, such as, Pn, Pg, Sn, Rg, etc, within the crust, 2-D numerical forward modeling will be applied to the data obtained from local seismic stations by simulating almost all waves including not only body wave but also surface wave generated without having to explicitly include them under consideration of Q factor. In this study, after getting rid of instrumental response by deconvolution, pseudo-spectral method instead of relying on typical numerical methods, such as, FEM(Finite Element Method) and FDM(Finite Difference Method), will be implemented for 2-D numerical forward modeling by considering velocities of P-wave and S-wave, density, and Q factors. Ultimately, the Power of reaching the enhanced capability on discerning local and regional seismic phases will make it easier for us to identify the seismic source, whether it is originated from man-made explosion or pure earthquake.

  • PDF

Source Mechanism of an Explosive Eruption at White Island Volcano, New Zealand, Determined from Waveform Inversions (모멘트 텐서를 이용한 White Island 화산분화 지진원 메커니즘 분석)

  • Han, Arim;Kim, Keehoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • We studied the source mechanisms of very-long-period event recorded at seismic station WIZ near White Island Volcano, New Zealand on August 4, 2012. Since seismic data at only one station were available, we conducted moment tensor inversion using three simplified models (explosion, crack, and pipe models). To constrain the moment tensor solution of seismic event, we computed synthetic data for each model to compare with observed data. Type and orientation for the best model is a crack at a depth of 1600 m with a dip of $80^{\circ}NE$ and a strike of $N80^{\circ}W$. We interpret that a deep explosion may have opened a crack for gases to escape, and the upward gas flow triggered the surface explosions four hours later as confirmed by a webcam. The interpretation based on moment tensor inversion is consistent with previous studies of geochemical data of the volcanic island.

Imaging of Seismic Sources Using Time Reversal Wave Propagation (지진파 역행 전파를 이용한 지진원 영상화)

  • Sheen, Dong-Hoon;Baag, Chang-Eob;Hwang, Eui-Hong;Ryoo, Yong Gyu;Youn, Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.181-186
    • /
    • 2006
  • An imaging method of seismic sources using time-reversal wave propagation is presented. The method is based on the time-reversal invariance and the spatial reciprocity of the wave equation. Time-reversal wave propagation has been used to image anomalous features of a midium in medical imaging, non destructive testing and waveform tomography. Seismogram is the record whose energy is propagated from the seismic source. If time-reversed seismogram propagates back into the medium, seismic energy is concentrated at the origin time of the event and at the source location. In this work, a staggered-grid finite-difference method of the elastic wave equation is parallelized for 3-D wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF

Variation Analysis of Geomagnetic Data Observed Around the Event of Andong Earthquake (May 2, 2009) (안동지진(2009년 5월 2일) 발생 기간 지자기장 자료의 변동성 분석)

  • Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.683-691
    • /
    • 2009
  • Geomagnetic variation around May 2, 2009 when Angdong earthquake broke out was analyzed using the data recorded at the Cheong-yang geomagnetic observatory, KMA. Firstly, we predict the geomagnetic variation by PCA analysis of geomagnetic data, and then compare the predicted value with the observed data to find any significant differences in residuals. Secondly, wavelet semblance technique is applied to compare the time series before and after the earthquake. Some meaningful change is detected in the Z-field. Thirdly, eigen value analysis for the 3 component geomagnetic data is performed. The location of the observatory was too far from the epicenter and the magnitude was too small to find decisive precursory phenomenon. Nevertheless we can detect some significant correlation between the earthquake and the variation of the geomagnetic field. Various signal processing methods applied in this study will give some opportunity to find precursory effects in the future.

Proposed program for monitoring recent Crustal movement in Korean Peninsula

  • Hamdy, Ahmed M.;Jo, Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.283-292
    • /
    • 2002
  • The Korean peninsula is located at the edge of the East Asian active margin. The seismic activity in the Korean Peninsula is relatively low compared with the neighboring countries China and Japan. According to the available Seismic information, the Korean Peninsula is not totally safe from the Earthquake disaster. Moreover, the area is surrounded by varies tectonic forces which is resulted from the relative movements of the surrounding tectonic plates "Pacific, Philippine Sea, Eurasian and South China". Nowadays South Korea has 65 GPS stations belong to 5 governmental organizations "each organization figure out its own GPS stations for different requirements" In order to minimize the seismic hazard in the Korean Peninsula a program for monitoring the recent crustal movement has been designed considering the uses of the available GPS station "some selected stations from the previously mentioned stations" and the tectonic settings in and around the Korean Peninsula. This program is composed of two main parts, the first part to monitor the crustal deformation around the Korean Peninsula with the collaboration of the surrounding countries "China and Japan" this part is composed of two phases "East Sea Phase and Yellow Sea Phase". These phases will be helpful in determining the deformation parameters in the East Sea and the Yellow Sea respectively While the Second part of this program, is designed to determine the deformation parameters id and around the main faults in the Korean Peninsula and the relative movement between the Korean Peninsula and the Cheju Island. Through out this study the needs of crustal movement center rose up to collect the data from the previously mentioned stations and Organizations in order to use such reliable data in different geodynamical application.

  • PDF