• Title/Summary/Keyword: 지중벽체

Search Result 52, Processing Time 0.025 seconds

Model Tests for The Behavior of Propped Retaining Walls in Sand (굴착모형실험을 통한 토류벽체 및 지반거동에 관한 연구)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.259-279
    • /
    • 1999
  • Model tests on propped retaining walls were performed for the investigation of wall displacement, distribution of earth pressure, surface settlement and underground movement at various excavation stage in sand. The result of model tests on the trough of surface settlement showed considerable difference depending on the characteristic of wall stiffness, wall friction and soil condition. The location of maximum underground movement were found to be at range of 0.15H to 0. 1H(H: Final excavation depth). Effect of arching by the redistribution of earth pressure were closely related to the stiffness of wall as well as the soil condition. The wall displacement and earth pressure distribution were simulated by elasto - plastic beam analysis program and finite element method with GDHM model respectively. The result of elasto-plastic analysis showed some discrepancy on the wall displacement and earth pressure, but result of underground movement by FEM with various wall stiffness were in good agreement with the model tests.

  • PDF

Uplift Capacity of a Diaphragm Wall Installed in Ground with High Groundwater Table (높은 지하수위 지반 속에 설치된 지중연속벽의 인발저항력)

  • Hong, Won-Pyo;Chim, Neatha
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.5-17
    • /
    • 2014
  • A series of model tests were conducted in order to observe the failure surface generated around a diaphragm wall embedded in ground with high groundwater table. Images of the soil deformation around the model wall were captured during the test. The configuration of the failure surface in soil around the model wall could be obtained from analyzing the image of the soil deformation. Based on the configuration of the failure surface observed in the model test, an analytical approach was proposed to predict the uplift capacity of a diaphragm wall installed in ground. The analytical approach considers not only the wall properties such as length, thickness and surface roughness of diaphragm walls but also the soil strength properties such as the internal friction angle and the cohesion of soil. The predicted uplift capacity of a diaphragm wall shows a good agreement with the experimental one measured in the model test.

The Method of Certificating Waterproof Effect for Consecutive Column-Wall Mass in Underground (주열식 지중연속벽체의 차수효과 확인 방안)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.5-9
    • /
    • 2017
  • On the flow of groundwater, the effect of consecutive column-wall in underground as a hydraulic barrier could be identified by conventional geotechnical methods ((1)visualiy identification of wall mass after underground excavating, (2)uniaxial compressive strength test for core of wall mass in underground, (3)in-situ permeability test in the hole after coring wall mass). However, for the cut off the leakage or infiltration of very high concentrated leachate from the waste landfill or the contaminated groundwater, the waterproof effect of consecutive column-wall in underground should be verified more objectively, by in-situ measuring of pH, temperature and salinity. and by evaluating of their consistency and similarity throughout analyzing the characteristics of basic components and their profiles through the series of chemical experiments. Furthermore, its waterproof effect could be verified additionally throughout deciding the similarity more simply by comparing the general distribution patterns including the difference of high and low peaks from the chromatograms using GC-MS for surrounding groundwater.

The Study on Cutting-off the Leachate Leakage or Infiltration from Waste Landfill by Wall Mass Constructed in Underground (지중 시공 벽체의 매립장 침출수 차단성 연구)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.27-34
    • /
    • 2018
  • The effect of cutting-off the leakage was identified by the cement based wall mass constructed in underground, as complete facilities for reinforcement in shear strength of landfill which was subjected to circular failure and for cutting-off the leachate from the costal waste landfill. By (1) visual inspection after underground excavating and (2) compressive strength test for core of underground wall, it could be identified that quality of wall mass constructed in underground was so effective, and by additional test, so as (3) in-situ permeability test in the hole after coring wall mass, (4) analyzing the characteristics of basic components and their profiles through the series of chemical experiments and (5) deciding the general distribution patterns from the chromatograms using GC-MS, it could be identified that watertight and cutting-off the leachate of wall mass constructed in underground was very effective. Therefore, it is concluded that five types of tests suggested in this study can judge the effect of cutting-off the leakage or infiltration of very high concentrated leachate from the waste landfill.

Inspection of Underground Slurry Wall for LNG Storage Tank (LNG 저장 탱크 지중연속벽 품질시험)

  • Kim, Young-H.;Jo, Churl-Hyun;Lim, Seong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • Nondestructive testing was carried out in order to evaluate the structural integrity and construction quality of the slurry wall of the underground LNG storage tank. 9 test points were selected, and the wall thickness, rebar spacing, and compressive strength of the slurry wall were evaluated by stress wave impact-resonance method, GPR, sonic velocity, and rebound testing, respectively. As results, the wall thickness, rebar sparing and estimated compressive strength satisfy the design criteria.

Deformation Characteristics of Diaphragm Wall Induced by Deep Excavation(I) -Instrumentation and Experiments- (대규모 굴착공사에 따른 지중연속벽체의 변형특성(I) -계측 및 실험-)

  • 김동수;이병철;김동준;양구승
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.93-105
    • /
    • 2001
  • 해성토층(풍화토 및 모래질 충적토가 암반 위에 쌓인) 위에 준설매립된 수도권 해안매립지역에서 원형의 대심도 굴착공사로 인하여 발생하는 지중연속벽의 수평변위에 대한 현장계측을 중심으로 연구를 수행하였다. 현장측정으로는 지중연속벽의 8방향에서 벽체수평변위와 철근응력, 토압, 간극수압 등이 측정되었고, 정확한 측정결과를 얻기 위하여 합리적인 해석 및 보정방법이 연구되었다. 현장측정결과 굴착시공단계에 따라서 벽체수평변위가 증가하였으며, 일정깊이에 존재하는 점토층을 굴착함으로써 간극수압의 급격한 변화가 측정되었다. 한편, 굴착전후의 구속압감소에 따른 지반물성치의 변화를 정리하였다. 굴착전후의 탄성계수는 일정깊이까지 상당한 정도로 감소됨을 알 수 있었고 굴착전후 여러 가지 시험방법에 따른 탄성계수의 차이들을 비교하였다.

  • PDF

A Study on the Behavior of Diaphragm Walls by Numerieal Method (수치해석(數値解析)에 의한 지중연속벽(地中連續壁)의 거동(擧動)에 관한 연구(硏究))

  • Lee, Hyung Soo;Chung, Hyung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 1990
  • This paper deals with the influences on the wall movements and earth pressure distribution for strutted diaphragm wall of various design depth ration and pre-displacement at strutted point. The numerical method is adopted for the study. The conclusions derived from the study were summarized as followes: 1. The elasto-plastic depth ratio in the passive region is found to decrease as such parameters as wall stiffness, soil density and penetration depth ratio decrease. 2. Values of maxium bending moments of the walls decrease with the increase of soil density, and the influence to the wall stiffness increases in proportion to the penetration depth. 3. Maximum strut reaction is found to be inversely proportional to the soil density. 4. Pre-displacement at the point of strut installation must be brougt into consideration on account of its active influence to the deflection of wall bodies.

  • PDF

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

Behaviour of a 2-arch Tunnel in a Large-scale Model Test (대규모 실내 모형실험을 통한 2-ARCH 터널의 거동 분석)

  • Lee C.J.;Kim J.S.;Ryu N.Y.;Lee S.D.;Jeong K.H.;Yang J.W.
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.282-291
    • /
    • 2005
  • 사암 및 이암을 기반암으로 하는 산악지역에 건설되는 2-아치 (2-arch) 터널의 거동을 터널설계 단계에서 분석하기 위하여 대규모 실내 모형실험을 실시하였다. 터널이 시공될 예정인 지반과 유사한 지질공학적 특성을 가지는 콘크리트 블록을 이용하여 모형지반을 조성하였다. 모형실험은 중앙터널 (pilot tunnel) 굴착을 포함한 여러 단계의 굴착과정으로 구분하여 실시되었다. 또한 터널 .공용기간 중 터널의 거동을 연구하기 위하여 터널굴착 완료 후 상재하중을 작용시켰다. 실험결과에 의하면 대부분의 지반변위는 중앙터널 굴착에 의해 발생했으며, 그 이후 터널 굴착단계에서의 변위발생은 미미한 것으로 나타났다. 또한 대부분의 지중변위는 0.25D 이내의 범위에서 발생하였다. 여기서 D 는 터널의 폭이다. 한편 실험결과를 분석하여 경암에 시공되는 2-아치 터널의 중앙벽체(centre pillar)에 작용하는 하중에 대한 경험적인 공식을 제시하였다. 터널시공 완료 후 공용기간 중 상재하중이 작용할 경우 그 크기에 따라서는 터널굴착에 의해 발생한 것보다 더 큰 지중변위가 발생할 수 있는 것으로 분석되었다. 터널의 거동은 중앙벽체의 강성에 큰 영향을 받는 것으로 나타나 이를 터널설계에 반영하여 중앙벽체의 강성을 증가시켰다. 현재 터널시공을 위한 사전작업이 진행 중에 있으며, 터널의 굴착은 2005년 하반기에 실시될 예정이다.

  • PDF

A Study of the Optimal Displacement Analysis Algorithm for Retaining Wall Displacement Measurement System Based on 2D LiDAR Sensor (2D LiDAR 센서 기반 흙막이 벽체 변위 계측 시스템의 최적 변위 분석 알고리즘 연구)

  • Kim, Jun-Sang;Lee, Gil-yong;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.70-78
    • /
    • 2023
  • Inclinometer has several problems of 1)difficulty installing inclinometer casing, 2) measuring 2D local lateral displacement of retaining wall, 3) measurement by manpower. To solve such problems, a 2D LiDAR sensor-based retaining wall displacement measurement system was developed in previous studies. The purpose of this study is to select a displacement analysis algorithm to be applied in the retaining wall displacement measurement system. As a result of the displacement analysis algorithm selection, the M3C2 (Multiple Model to Model Cloud Comparison) algorithm with a displacement estimation error of 2mm was selected as the displacement analysis algorithm. If the M3C2 algorithm is applied in the system and the reliability of the displacement analysis result is secured through several field experiments. Convenient management of the displacement for the retaining wall is possible in comparison with the current measurement management.