• Title/Summary/Keyword: 지중매설관

Search Result 94, Processing Time 0.029 seconds

Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction (터널 및 지중매설물 시공에 따른 지반함몰 발생 원인 및 대책에 대한 지반공학적 조사 연구)

  • Choi, Shin-Kyu;Back, Seung-Hun;An, Jun-Beom;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • This study investigated the occurrences, causes, and mitigation of the recent ground subsidence and underground cavity generation events in Korea. Two main causes of ground subsidence are (1) the soil erosion by seepage during tunneling and earth excavation and (2) the damage of underground pipes. The main cause of the soil erosion during tunneling was the uncontrolled groundwater flow. Especially, when excavating soft grounds using a tunnel boring machine (TBM), the ground near TBM operation halt points were found to be the most vulnerable to failure. The damage of underground pipes was mainly caused by poor construction, material deterioration, and differential settlement in soft soils. The ground subsidence during tunneling and earth excavation can be managed by monitoring the outflow of groundwater and eroded soils in construction sites. It is expected that the ground subsidence by the underground pipe damage can be managed or mitigated by life cycle analysis and maintenance of the buried pipes, and by controlling the earth pressure distribution or increasing the bearing capacity at the upper ground of the buried pipes.

A Study on the Behavior of Buried Flexible Pipes with Soil Condition (지반조건에 따른 지중매설 연성관의 거동에 관한 연구)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In general, pipes buried underground can be classified into either rigid or flexible pipe. Glass fiber reinforced thermosetting polymer plastic (GFRP) pipe can be considered as one of typical flexible pipes for which the soil-pipe structure interaction must be taked into account in the design. In this paper, we present the result of an investigation pertaining to the short-term and long-term behavior of buried GFRP pipe. The mechanical properties of the GFRP pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, Ring deflection is measured by the field tests and the finite element analysis. Also, the extrapolation using these techniques typically extends the trend from data gathered over a period of approximately 5,232 hours, to a prediction of the property at 50 years, which is the typical maximum extrapolation time. Therefore, it was investigated that the long-term ring deflection of GFRP pipe estimated by methods for Monod-type.

A Study on the Deformation Behavior of the Underground Pipe under the External Load (외부하중에 의한 지중 매설관의 변형거동 특성에 관한 연구)

  • Yoo, Hankyu;Park, Eonsang;Kim, Dongryul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.71-79
    • /
    • 2008
  • The underground conduit laid under different environments exhibits various behaviour according to the ground and external load as well as the loading time and conditions, so on. As the environmental conditions are usually different even within the same area, it is very difficult to correctly predict the stress conditions and behaviour of the underground conduit using currently available theoretical analysis. Especially, it is not yet satisfied in Korea for the evaluation of the underground conduit under the influence of the load of vehicles or unexpected loading conditions. Thus, in this study the assessment for the excavation depth and ground disturbance was carried out with a large box model test and numerical analysis. Numerical analysis was also performed for the assessment of dynamic loading conditions like railway load.

  • PDF

A Study on Experimental and Numerical Analysis for Behavior of Multi-layerd Pipeline Subjected to Blasting Vibration (지중 다중 관의 발파 진동 특성 분석을 위한 실험 및 수치해석적 연구)

  • Kim, Moon-Kyum;Won, Jong-Hwa;Noh, Gi-Seok;Cho, Seok-Ho;Kim, Kyung-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.417-420
    • /
    • 2010
  • 지중매설관은 경우에 따라 긴 수송거리를 보이기 때문에 부식 및 충격에 의한 파손 등에 대한 모니터링이 어려운 실정이다. 이러한 조건을 극복하기 위하여 복합관 및 다중관을 설치하고 있으나, 이에 대한 연구는 아직 미비한 실정이다. 본 연구에서는 발파진동원에서 고정된 이격거리, 매설심도에서 배관 상단에 특정 진동속도를 발생시키는 발파 하중을 고려하여, 이격거리에 대한 수치해석을 수행하였으며 장약량에 따른 이격거리와 발파효율을 측정하였다. 실험값과 수치해석 값의 오차는 발파지점에서 가까울수록 크게 나타났으며 발파지점과 마주보는 방향이 반대방향보다 크게 나타났다.

  • PDF

Response Analysis of Buried Pipeline Subjected to Longitudinal Permanent Ground Deformation (종방향 영구지반변형에 대한 지중 매설관로의 거동특성 해석)

  • 김문겸;임윤묵;김태욱;박종헌
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.51-61
    • /
    • 2002
  • In this research, a numerical algorithm is developed for the response analysis of burined pipelines considering longitudinal permanent ground deformation(PGD) due to liquefaction induced lateral spreading. Buried pipelines and surrounding soil are modeled as continuous pipelines using the beam elements and a series of elasto-plastic springs represented for equivalent soil stiffness, respectively. Idealized various PGD patterns based on the observation of PGD are used as a loading configuration and the length of the lateral spread zone is considered as loading parameter. Numerical results are verified with other research results and efficient applicability of developed procedure is shown. Analyses are performed by varying different parameters such as PGD pattern, pipe diameter and pipe thickness. Through these procedures, relative influences of various parameters on the response of buried pipeline subject to longitudinal PGD are investigated.

Behavior of Flexible Pipes with the Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒷채움재 이용시 지중연성관의 거동특성)

  • Oh, Gidae;Kim, Daehong;Lee, Daesu;Kim, Kyoungyul;Hong, Sungyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.33-41
    • /
    • 2009
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM (controlled low strength materials) accelerated flow ability. CLSM has already been stage of commercial use in the foreign countries led by power company. In this study, we estimated the behavior of flexible pipe with flowable backfill materials and sand to compare on the DB24 load. The results showed that the deformation of flexible pipe is affected by types of backfill materials. CLSM shows better behavior characteristics than compacting sand. But numerical and analytical results that peformed to compare to the field test results showed big gap with the field results.

  • PDF

Dynamic Behavior of Buried Pipelines Constructed by Domestic and USA Specifications (국내 및 미국 시방서에 따라 시공된 지중매설관의 동적거동)

  • Jeon, Sang-Soo;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • Lifeline Damages induced by earthquake loading brings not only a structure damage but the communication problems by the interruption of various energy utilities such as electric power, gas, and water resources. Earthquake loss estimation systems in USA and Japan, called as HAZUS (Hazard in US) and HERAS (Hazards Estimation and Restoration Aid System), respectively, have been established for the purpose of efficient responding to the earthquake hazard. Sufficient damage records are required to establish these systems. However, there are insufficient data set of damage records obtained from previous earthquakes in Korea. In this study, according to the construction specifications of the pipelines in both Korea and USA, the behavior of both ductile and brittle pipelines embedded in dense sand overlying various soils, such as clay, sand, and gravel were examined with respect to the pipeline characteristics under various earthquake loadings. The applicability of pipeline damage prediction used in HAZUS program to Korea has been investigated.

The Response of Buried Flexible pipe due to Surcharge Load and Uplifting Force. (상재하중 및 인발하중으로 인한 식중매설연성관의 거동 특성)

  • 권호진;정인준
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.31-48
    • /
    • 1987
  • The vertical pressure due to soil prism load and surface surcharge load acts on buried pipe, and occasionally uplifting force due to earthquake or differential settlement acts on it. In this paper, study was performed to estimate the pressure acting on the buried pipe due to soil prism load through analyzing Marston-Spangler theory by new method. And loading tests on the buried flexible pipe were performed to study on the response of the pipe due to surface surcharge load. Also, through the estimation of uplifting resistance theory and uplifting test for buried pipe, the method to determine the maximum uplifting resistance of buried pipe was proposed.

  • PDF

Evaluation of Lateral Earth Pressure on Buried Pipes in Soft Ground Undergoing Lateral Movement (측방유동지반속 지중매설관에 작용하는 토압식 산정)

  • 홍원표;한중근;배태수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.55-65
    • /
    • 2002
  • Model tests were performed to investigate the mechanism of lateral earth pressure on a buried pipe, which was installed in a plastic flowing soil mass undergoing lateral movement. On the basis of failure mode tests, the equation of lateral earth pressure to apply Maxwell's visco-elastic model was proposed to consider the soil deformation velocity. Through a series of model tests of differential soil deformation velocity, lateral earth pressure of theoretical equation was compared with experimental results. When lateral soil movement was raised, the lateral earth pressure acting on buried pipe increases linearly with the soil deformation velocity. It shows that the lateral earth pressure on buried pipe is largely affected by soil deformation velocity. When plastic soil movement was raised, lateral earth pressure predicted by theoretical equation showed good agreement with experimental results. Also, coefficient of viscosity by theoretical equation had a good agreement with direct shear test results.