• Title/Summary/Keyword: 지웨이브

Search Result 294, Processing Time 0.024 seconds

A Investigation for Usage Reason and Usage Satisfaction of Setting Perm and Digital Perm (셋팅 펌과 디지털 펌 기기의 사용 이유와 사용 만족도 조사)

  • Hong, Mi Ra;Park, Hye ryeon;Youn, Young Han
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.312-325
    • /
    • 2020
  • The heat perm is the preferred hair technique to get positive affects such as increase of work efficiency and sale in hair industry. The subjects of this study is 262 hair shop workers and it was investigated heat perm device using reason, using satisfaction and repurchase. As a result, the perm accounted for 32.1 and the use of digital perm devices was more than that of setting perm devices. The reasons for the use were that the longer the setting device was engaged, the flexible it was the hair wave. The higher the rank, the better the hair wave retention and the long hair treatment, and it also helped sales. (p<0.05) Digital perm device can be hair-wavy in the desired style while in use, and the longer the working period, the more advantageous. The repurchase intention was that the longer the period of service and the higher the rank, the more advantageous it was. (p<0.05) The reasons for the usage of setting perm and digital perm were correlated with the satisfaction of use and the repurchase intention. The reasons for the use were helpful for sales and elastic hair wave and long hair waving was possible, which affected the repurchase. In conclusion, heat perm had been found not only helped sales, made a good hair wave, and the long hair waving, but also to be preferred to the long working period of the hair shop and the rank above the designer.

Study on the Detoxification of Asbestos-Containing Wastes (ACW) Using SiC Plate (SiC 플레이트를 이용한 석면 함유 폐기물의 무해화 연구)

  • Hong, Myung Hwan;Choi, Hyeok Mok;Joo, So Young;Lee, Chan Gi;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Even asbestos-containing waste (ACW) are highly harmful to humans, it continues being produced due to the massive disposal of asbestos-containing products. A development of asbestos detoxification and recycling technologies is required. Heat treatment using microwave is the most efficient method for ACW detoxification. However, microwave heat treatment method has the limitation that asbestos does not absorb microwave at room temperature. That is why, in this study, ACW was detoxified by microwave heat treatment adding the ACW between SiC plates, which are inorganic heating elements that absorb microwaves at room temperature. In order to improove the heat transfer, ACW was crushed and pulverized and then heated using microwave. Microwave heat treatment temperature and time variables were adjusted to investigate the detoxification properties according to heat treatment conditions. After heat treatment, treated ACW was analyzed for detoxification properties through crystal structure and microstructure analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microwave heat treatment method using SiC plate can be heated up to the target temperature within a short time. Finally, complete asbestos detoxification was confirmed from the crystal structure and the microstructure when the microwave heat treatment was performed at 1,200℃ for at over 60 minutes and at 1,300℃ for at over 10 minutes.

3D volumetric medical image coding using unbalanced tree structure (불균형 트리 구조를 이용한 3차원 의료 영상 압축)

  • Kim Young-Seop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.567-574
    • /
    • 2006
  • This paper focuses on lossy medical image compression methods for medical images that operate on three-dimensional(3-D) irreversible integer wavelet transform. We offer an application of unbalanced tree structure algorithm to medical images, using a 3-D unbalanced wavelet decomposition and a 3-D unbalanced spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method. We have tested our encoder on volumetric medical images using different integer filters and 16 coding unit size. The coding unit sizes of 16 slices save considerable dynamic memory(RAM) and coding delay from full sequence coding units used in previous works. If we allow the formation of trees of different lengths, then we can accomodate more transaxial scales than three. Then the encoder and decoder can then keep track of the length of the tree in which each pixel resides through the sequence of decompositions. Results show that, even with these small coding units, our algorithm with I(5,3)filter performs as well and better in lossy coding than previous coding systems using 3-D integer unbalanced wavelet transforms on volumetric medical images.

  • PDF

Visual Feature Extraction for Image Retrieval using Wavelet Coefficient’s Fuzzy Homogeneity and High Frequency Energy (웨이브릿 계수의 퍼지 동질성과 고주파 에너지를 이용한 영상 검색용 특징벡터 추출)

  • 박원배;류은주;송영준
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • In this paper, we propose a new visual feature extraction method for content-based image retrieval(CBIR) based on wavelet transform which has both spatial-frequency characteristic and multi-resolution characteristic. We extract visual features for each frequency band in wavelet transformation and use them to CBIR. The lowest frequency band involves spacial information of original image. We extract L feature vectors using fuzzy homogeneity in the wavelet domain, which consider both the wavelet coefficients and the spacial information of each coefficient. Also, we extract 3 feature vectors wing the energy values of high frequency bands, and store those to image database. As a query, we retrieve the most similar image from image database according to the 10 largest homograms(normalized fuzzy homogeneity vectors) and 3 energy values. Simulation results show that the proposed method has good accuracy in image retrieval using 90 texture images.

  • PDF

An Adaptive AEC Based on the Wavelet Transform Using M-channel Subband QMF Filter Banks (M-채널 서브밴드 QMF 필터뱅크를 이용한 웨이브릿변환기반 적응 음향반향제거기)

  • 안주원;권기룡;문광석;김문수
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • This paper presents an adaptive AEC(acoustic echo canceller) based on the wavelet transform using M-channel subband QMF filter banks. The proposed algorithm improves the performance of AEC with a realtime process by a low complexity of wavelet transform filter banks, a subband processing and a orthogonality of wavelet subband filter. Adaptive filter coefficients of each subband are updated using LMS algorithm with a low complexity and a easy realization for a realtime processing and a reduction of hardware cost. For a input signal, a white Gaussian noise and a real speech signal with a environment noises are used for a performance estimation of the proposed algorithm. As a result of computer simulation, the proposed AEC has a low asymptotic error, a low computation complexity and a robust performance.

  • PDF

The Classification Accuracy Improvement of Satellite Imagery Using Wavelet Based Texture Fusion Image (웨이브릿 기반 텍스처 융합 영상을 이용한 위성영상 자료의 분류 정확도 향상 연구)

  • Hwang, Hwa-Jeong;Lee, Ki-Won;Kwon, Byung-Doo;Yoo, Hee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2007
  • The spectral information based image analysis, visual interpretation and automatic classification have been widely carried out so far for remote sensing data processing. Yet recently, many researchers have tried to extract the spatial information which cannot be expressed directly in the image itself. Using the texture and wavelet scheme, we made a wavelet-based texture fusion image which includes the advantages of each scheme. Moreover, using these schemes, we carried out image classification for the urban spatial analysis and the geological structure analysis around the caldera area. These two case studies showed that image classification accuracy of texture image and wavelet-based texture fusion image is better than that of using only raw image. In case of the urban area using high resolution image, as both texture and wavelet based texture fusion image are added to the original image, the classification accuracy is the highest. Because detailed spatial information is applied to the urban area where detail pixel variation is very significant. In case of the geological structure analysis using middle and low resolution image, the images added by only texture image showed the highest classification accuracy. It is interpreted to be necessary to simplify the information such as elevation variation, thermal distribution, on the occasion of analyzing the relatively larger geological structure like a caldera. Therefore, in the image analysis using spatial information, each spatial information analysis method should be carefully selected by considering the characteristics of the satellite images and the purpose of study.

Wavelet Image Compression Using Improved Morphology and Adaptive Quantization (개선된 모폴로지와 적응양자화를 이용한 웨이브릿 영상압축)

  • 류태경;강경원;정태일;권기룡;문광식
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.291-294
    • /
    • 2000
  • 본 논문에서는 웨이브릿 변환영역에서 개선된 모폴로지와 적응양자화를 이용한 영상부호화 방법을 제안한다 제안한 방법은 제로트리를 기반으로 한 기존의 방법들과 유사한 코딩성능을 가지면서 EZW, SFQ 등에서 나타나는 복잡성을 모폴로지를 사용하여 유효정보를 클러스터링 함으로써 복잡성을 줄일 수 있다. 그러나 클러스터의 개수가 많아지면 클러스터를 나타내는 부가정보의 양도 많아진다. 이러한 부가정보의 비율이 실제데이터에서 많은 비중을 차지하기 때문에 개선된 모폴로지를 적용하여 효율적으로 부호화 함으로써 영상의 화질을 개선하였다. 또한 고주파 대역에서의 유효계수를 효율적으로 코딩하기 위해 적응양자화를 적용하여 양자화 시 오차범위를 줄일 수 있다. 따라서 제안한 방법은 양자화 시 발생하는 많은 비교연산을 줄일 수 있으며, 기존의 방법에 비해 화질을 개선하였다.

  • PDF

Massive Fluid Simulation Using a Responsive Interaction Between Surface and Wave Foams (수면거품과 웨이브거품의 미세한 상호작용을 이용한 대규모 유체 시뮬레이션)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.29-39
    • /
    • 2017
  • This paper presents a unified framework to efficiently and realistically simulate surface and wave foams. The framework is designed to first project 3D water particles from an underlying water solver onto 2D screen space in order to reduce the computational complexity of determining where foam particles should be generated. Because foam effects are often created primarily in fast and complicated water flows, we analyze the acceleration and curvature values to identify the areas exhibiting such flow patterns. Foam particles are emitted from the identified areas in 3D space, and each foam particle is advected according to its type, which is classified on the basis of velocity, thereby capturing the essential characteristics of foam wave motions. We improve the realism of the resulting foam by classifying it into two types: surface foam and wave foam. Wave foam is characterized by the sharp wave patterns of torrential flow s, and surface foam is characterized by a cloudy foam shape even in water with reduced motion. Based on these features, we propose a technique to correct the velocity and position of a foam particle. In addition, we propose a kernel technique using the screen space density to efficiently reduce redundant foam particles, resulting in improved overall memory efficiency without loss of visual detail in terms of foam effects. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results.