• Title/Summary/Keyword: 지열냉난방 시스템

Search Result 120, Processing Time 0.022 seconds

A Study on High Efficiency Geothermal Heat Pump System by Improving Flow of Heat Exchanger (열교환기의 흐름개선을 통한 고효율 지열 히트펌프 시스템에 관한 연구)

  • Ahn, Sung-Hwan;Choi, Jae-Sang;Kim, Sang-Bum;Ahn, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.42-46
    • /
    • 2017
  • As $CO_2$ emission with imprudent using fossil fuel, annual mean temperature of earth is increased in every year. Geothermal energy is inexhaustible energy resource to solve this problem. Heat pump performance and heat exchange efficiency of ground loop are important to distribute widely. Thus, this study are performed to increase heat pump performance and heat exchange efficiency of ground loop with dual expansion valves and spacer. As a results, COP of cooling & heating is obtained improvement up to 11.4% using dual expansion valves, and heat exchange efficiency is increased up to 17.5% using spacer. It will be reduced initial installation cost due to increasing heat pump performance and heat exchange efficiency of ground loop.

Study on Thermal Performance of Energy Textile in Tunnel (터널 지열 활용을 위한 에너지 텍스타일의 열교환 성능 연구)

  • Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1907-1914
    • /
    • 2013
  • Textile-type heat exchangers installed on the tunnel walls for facilitating ground source heat pump systems, so called "energy textile", was installed in an abandoned railroad tunnel around Seocheon, South Korea. To evaluate thermal performance of the energy textile, a series of long-term monitoring was performed by artificially applying daily intermittent cooling and heating loads on the energy textile. In the course of the experimental measurement, the inlet and outlet fluid temperatures of the energy textile, pumping rate, temperature distribution in the ground, and air temperature inside the tunnel were continuously measured. From the long-term monitoring, the heat exchange rate was recorded as in the range of 57.6~143.5 W per one unit of the energy textile during heating operation and 362.3~558.4 W per one unit during cooling operation. In addition, the heat exchange rate of energy textile was highly sensitive to a change in air temperature inside the tunnel. The field measurements were verified by a 3D computational fluid dynamics analysis (FLUENT) with the consideration of air temperature variation inside the tunnel. The verified numerical model was used to evaluate parametrically the effect of drainage layer in the energy textile.

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.

Application and Revitalization Method of Domestic Geothermal Heat Pump System (국내의 지열에너지 열펌프 시스템 활용현황과 활성화 방안)

  • Park, Hye-Ri;Ko, Young-Ho;Kim, Min-Tae;Park, Jong-Li
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.922-927
    • /
    • 2009
  • Due to the law of use of sustainable alternative energy recently legislated, many public institutions are ordered to use renewable energy. So it gets people's eyes on Geothermal energy system among other suggested renewable energy. Since there is hardly existence of a volcanic region, Geothermal heat pump system is generally used most in Korea. However, the important technology and materials are not localized and further, with only our technical skills it is arduous to popularize and develop Geothermal energy because of lack of revitalization related to the law and the regime for locally suitable Data-base. Moreover, an access of renewable energy is too much hard because of people's low interests about Geothermal energy. But fortunately, the well-studied about Geothermal heat system started to be adopted in many other provinces. Therefore, we study this with intend to popularize and develop Geothermal energy.

  • PDF

Performance Prediction of Geothermal Heat Pump(GHP) System with Energy Piles Using Simulation Approach (시뮬레이션을 통한 에너지파일 적용 지열 히트펌프 시스템의 성능 예측)

  • Sohn, Byong-Hu;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.155-163
    • /
    • 2012
  • The aim of this study is to evaluate the performance of the GHP system with 150 energy piles for a commercial building. In order to demonstrate the feasibility of a sustainable performance of the system, simulations were conducted over 1-year and 20-year periods, respectively. The 1-year simulation results showed that the maximum and minimum temperatures of brine returning from the energy piles were $23.80^{\circ}C$ and $7.90^{\circ}C$, which were in a range of design target temperatures. In addition, after 20 years' operation, these returning temperatures decreased slowly to $23.05^{\circ}C$ and $6.98^{\circ}C$, and finally reached to stable state. The results also showed that the energy piles injected heat of 65.6 MWh to the ground and extracted heat of 96.0 MWh from the ground, respectively. Also, it is expected this GHP system with energy piles can operate with average SPF of more than 4.15 for long term.

Performance Prediction of Geothermal Heat Pump(GHP) System Using Cast-in-Place Energy Piles (현장 타설 에너지파일을 적용한 지열 히트펌프 시스템의 성능 예측)

  • Sohn, Byonghu;Jung, Kyung-Sik;Choi, Hangseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 2013
  • The aim of this study is to evaluate the performance of the GHP system with 45 cast-in-place energy piles(CEP) for a commercial building. In order to demonstrate the feasibility of a sustainable performance of the system, transient simulations were conducted over 1-year and 20-year periods, respectively. The 1-year simulation results showed that the maximum and minimum temperatures of brine returning from the CEPs were $23.91^{\circ}C$ and $6.66^{\circ}C$, which were in a range of design target temperatures. In addition, after 20 years' operation, these returning temperatures decreased to $21.24^{\circ}C$ and $3.68^{\circ}C$, and finally reached to stable state. Annual average extraction heat of cast-in-place energy piles was 94.3 MWh and injection heat was 65.7 MWh from the 20 years of simulation results. Finally, it is expected this GHP system can operate with average heating SPF of more than 3.45 for long-term.

Construction of an Underground Heat Exchanger for Pig Housing (양돈용 지열교환기의 개발)

  • ;;H. J. Heege
    • Journal of Animal Environmental Science
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1995
  • To use the earth heat for the pig housing, an underground heat exchanger has constructed in depth of 2.5m and 20m length. The temperature of the outlet air was max. 8 kelvin higher than that of inlet air in winter season. In spite of the -7$^{\circ}C$ outside temperature, it could keep the air temperature from the earth tube above zero degree. The heating performance was maximum in value of 3.25Wh/㎥ and average of 1.75Wh/㎥ by the airflow volume of 340㎥/h. The slope of relative humidity from outlet air has shown gentler than that of inlet air. By using the underground heat exchanger, it would be possible to prepare an relatively uniform relative humidity in the swine stalls. The temperatures on the earth, where PVC pipes are buried, have shown 10~12$^{\circ}C$ on March. This can reduce the difference between day and night temperature during this season by using the underground heat exchanger.

  • PDF

The Effect of a Geothermal Heat Pump and Photovoltaics Application on the Building Energy Efficiency and ZEB Certification Rating for a Non-Residential Building (지열 열펌프 및 태양광 발전 적용이 비주거용 건물의 에너지효율등급과 ZEB 인증 등급에 미치는 영향)

  • Geon Ho Moon;Chang Yong Park
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Many government in the world have conducted building energy performance certification program to reduce building energy consumption. In this study, a reference building and its HVAC system was modeled, and the energy load and consumption were estimated by the ECO2 program. The software is a simple building energy simulation program based on monthly calculated method. The building energy efficiency rating the the reference building was 1+ under baseline condition. The simulation results showed that the insulation performance slightly affected building energy load and consumption, but light density had a significant effect on them. The application of geothermal heat pumps gave improvement of building energy efficiency rating but it could not make it possible to get zero energy building(ZEB) certification. The ZEB 5 certification could be achieved by using photovoltaics, however getting better grade was difficult. The simulation results showed that the ZEB 4 certification, one grade higher than ZEB 5, could be attained by using more than one renewable energy source such as geothermal and solar energy in this study.

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

법령과 고시-건설산업기본법 시행령 일부 개정

  • Korea Mechanical Construction Contractors Association
    • 월간 기계설비
    • /
    • no.2 s.211
    • /
    • pp.38-42
    • /
    • 2008
  • 건설산업기본법시행령.시행규칙이 지난 해 12월 28일 개정되어 1월 1일부터 시행에 들어갔다. 이번에 개정된 시행령은 기계설비공사업 업역 확대 및 국민연금, 건강보험료 비용정산 등을 주요 내용으로 개정되었다. 대한설비건설협회는 시행령.시행규칙 개정 과정에서 업역확대를 주목표로 설정하고 신규 사업분야인 시스템에어컨 설치공사, 지열냉난방설치공사, 자동제어 분야에서 전기.통신과 업역다툼이 있었던 자동원격검침 설비공사, 지능형 제어시스템 설치공사 등을 기계설비공사업역에 추가시켰다. 이로써 지난 해 건산법 개정 시 기계설비만 겸업제한 폐지를 4년 유예시킨 성과에 버금가는 성과를 거두었다. 또한 대한설비건설협회는 국민연금, 건강보험료의 비용 정산을 민간공사에도 도입될 수 있도록 끊임없이 건의하여 이번에 개정됨으로써 회원사의 보험료 납부 부담을 줄일 수 있게 되었다. 건산법 시행령·시행규칙의 주요 개정 내용 및 설비건설업과 관련한 신.구조문 대비표는 다음과 같다.

  • PDF