This paper presents a method for speech recognition using multi-section vector-quantization (MSVQ) and time-delay recurrent neural network (TDTNN). The MSVQ generates the codebook with normalized uniform sections of voice signal, and the TDRNN performs the speech recognition using the MSVQ codebook. The TDRNN is a time-delay recurrent neural network classifier with two different representations of dynamic context: the time-delayed input nodes represent local dynamic context, while the recursive nodes are able to represent long-term dynamic context of voice signal. The cepstral PLP coefficients were used as speech features. In the speech recognition experiments, the MSVQ/TDRNN speech recognizer shows 97.9 % word recognition rate for speaker independent recognition.
Though shared virtual memory (SVM) system promise low cost solutions for high performance computing they suffer from long memory latencies. These latencies are usually caused by repetitive invalidations on shared data. Since shared data are accessed through synchronization and the patterns by which threads synchronizes are repetitive, a prefetching scheme bases on such repetitiveness would reduce memory latencies. Based on this observation, we propose a prefetching technique which predicts future access behavior by analyzing access history per synchronization variable. Our technique was evaluated on an 8-node SVM system using the SPLASH-2 benchmark. The results show the our technique could achieve 34%~45% reduction in memory access latencies.
The accuracy of forecasting is remarkably important to reduce total cost or to increase customer services, so it has been studied by many researchers. In this paper, the artificial neural network (ANN), one of the most popular nonlinear forecasting methods, is compared with autoregressive integrated moving average(ARIMA) model through performing a prediction of container traffic. It uses a hybrid methodology that combines both the linear ARIAM and the nonlinear ANN model to improve forecasting performance. Also, it compares the methodology with other models in performance for prediction. In designing network structure, this work specially applies the genetic algorithm which is known as the effectively optimal algorithm in the huge and complex sample space. It includes the time delayed neural network (TDNN) as well as multi-layer perceptron (MLP) which is the most popular neural network model. Experimental results indicate that both ANN and Hybrid models outperform ARIMA model.
KSCE Journal of Civil and Environmental Engineering Research
/
v.40
no.3
/
pp.303-314
/
2020
The hydrological characteristics of watersheds and hydraulic systems of urban and river floods are highly nonlinear and contain uncertain variables. Therefore, the predicted time series of rainfall-runoff data in flood analysis is not suitable for existing neural networks. To overcome the challenge of prediction, a NARX (Nonlinear Autoregressive Exogenous Model), which is a kind of recurrent dynamic neural network that maximizes the learning ability of a neural network, was applied to forecast a flood in real-time. At the same time, NARX has the characteristics of a time-delay neural network. In this study, a hydrological model was constructed for the Taehwa river basin, and the NARX time-delay parameter was adjusted 10 to 120 minutes. As a result, we found that precise prediction is possible as the time-delay parameter was increased by confirming that the NSE increased from 0.530 to 0.988 and the RMSE decreased from 379.9 ㎥/s to 16.1 ㎥/s. The machine learning technique with NARX will contribute to the accurate prediction of flow rate with an unexpected extreme flood condition.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.5
/
pp.1013-1019
/
2016
This paper describes a novel Context-awareness Markov Chain Prediction (CMCP) algorithm based on movement prediction using Markov chain in Delay Tolerant Network (DTN). The existing prediction models require additional information such as a node's schedule and delivery predictability. However, network reliability is lowered when additional information is unknown. To solve this problem, we propose a CMCP model based on node behaviour movement that can predict the mobility without requiring additional information such as a node's schedule or connectivity between nodes in periodic interval node behavior. The main contribution of this paper is the definition of approximate speed and direction for prediction scheme. The prediction of node movement forwarding path is made by manipulating the transition probability matrix based on Markov chain models including buffer availability and given interval time. We present simulation results indicating that such a scheme can be beneficial effects that increased the delivery ratio and decreased the transmission delay time of predicting movement path of the node in DTN.
Purpose: We studied early rest/24 hour delay T1-201 perfusion SPECT for prediction of wall motion improvement after reperfusion in patients with acute myocardial infarction. Materials and Methods: Among 17 patients (male/female= 11/6, age: $59{\pm}13$) with acute myocardial infarction, 15 patients were treated with percutaneous transcoronary angioplasty (direct:2, delay: 11) and intravenous urokinase (2). Spontaneous resolution occurred in infarct-related arteries of 2 patients. We confirmed TIMI 3 flow of infarct-related artery after reperfusion in all patients with coronary angiography. We performed rest T1-201 perfusion SPECT less then 6 hours after reperfusion and delay T1-201 perfusion SPECT next day. T1-201 uptake was visually graded as 4 point score from normal (0) to severe defect (3). Rest T1-201 uptake ${\le}2$ or combination of rest T1-201 uptake ${\le}2$ or late reversibility were considered to be viable. Myocardial wall motion was graded as 5 point score from normal (1) to dyskinesia (5). Myocardial wall motion was considered to be improved when a segment showed an improvement ${\ge} 1$ grade in follow up echo compared with the baseline values. Results: Among 98 segments with wall motion abnormality, the severity of myocardial wall motion decrease was as follow: mild hypokinesia: 18/98 (18%), severe hypokinesia: 28/98 (29%), akinesia: 51/98 (52%), dyskinesia: 1/98 (1%). The wall motion improved in 85%. Redistribution (13%), and reverse redistribution (4%) were observed in 24 hour delay SPECT. Positive predictive value (PPV) and negative predictive value (NPV) of combination of late reversibility and rest T1-201 uptake were 99%, and 54%. PPV and NPV of rest T1-201 uptake were 100% and 52% respectively. Predictive values of combination of rest T1-201 uptake and late reversibility were not significantly different compared with predictive values of rest T1-201 uptake only. Conclusion: We conclude that early T1-201 perfusion SPECT predict myocardial wall motion improvement with excellent positive but relatively low negative predictive values in patients with acute myocardial infarction after reperfusion.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.11
/
pp.755-761
/
2017
In railways powered by AC power, the main circuit breaker (MCB) is used for supplying the electric power to the catenary of the vehicle. Generally, the main circuit breaker is located between the pantograph and the main transformer, and the phase of the power applied to the vehicle changes according to the operation timing of the main circuit breaker. The operation of the main circuit breaker should be actively controlled according to the phase of the power source, since the phase of the power causes unintended transient states in the vehicle's electrical system in the form of an inrush current and surge voltage. However, the MCB has a delay time when it operates which is not constant. Therefore, an intelligent controller is needed to predict the operation delay time and control the opening and closing of the MCB.
In this paper, an algorithm that provisions proportional differentiation of packet delays is proposed with an objective for enhancing quality of service (QoS) in future packet networks. It features an adaptive scheme that adjusts the target delay every time slot to compensate the deviation from the target delay which is caused by the prediction error on the traffic to be arrived in the next time slot. It predicts the traffic to be arrived at the beginning of a time slot and measures the actual arrived traffic at the end of the time slot. The difference between them is utilized to the delay control operation for the next time slot to offset it. As it compensates the prediction error continuously, it shows superior adaptability to the bursty traffic as well as the exponential rate traffic. It is demonstrated through simulations that the algorithm meets the quantitative delay bounds and shows superiority to the traffic fluctuation in comparison with the conventional non-adaptive mechanism. The algorithm is implemented with VHDL on a Xilinx Spartan XC3S1500 FPGA and the performance is verified under the test board based on the XPC860P CPU.
The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.5
no.4
/
pp.52-59
/
1991
본 논문은 유한시간 정정응답 제어이론을 이용한 직류전동기의 속도제어에 대하여 논하였다. 유한시간 정정응답 제어계는 이산시간제어를 적용하므로 제어량 포화현상과 검출지연 문제가 발생하여 계통의 불안정을 초래한다. 이러한 문제를 해결하기 위하여 포화상태에서도 고속응답이 가능하도록 예측제어를 적용한 보상기를 제안한다. 실험 결과 지령치가 포화되지 않은 상태에서는 1샘플링시간으로 정정할 수 있었다. 지령치가 포화한 상태에서는 포화로부터 벗어난 후 1샘플링시간으로 정정할 수 있었다. 또한 예측제어를 적용하므로써 과도시의 오우버슈우트가 억제된 고속정정이 가능함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.