최근 여러 분야에서 활용되고 있는 지식지도는 대량의 정보 속에 숨겨진 특징을 찾아서 그 의미를 파악할 수 있도록 가시적인 형태의 결과를 보여주는 것을 말한다. 본 논문에서는 2000년부터 2010년까지 컴퓨터 공학 분야의 국내 학술지에 게재된 논문들의 데이터베이스를 활용하여 연구동향 분석을 위한 키워드 연관 네트워크 기반의 지식지도를 제안하였다. 그 지식지도를 통해 키워드 연관 네트워크에서 개별 키워드가 속한 연결 요소의 크기 변화를 살펴봄으로써 관련 연구 주제의 영향력 변화를 추론할 수 있었다. 또한, 랜덤 네트워크와의 비교를 통해 키워드 연관 네트워크에서 최대 연결 요소의 크기가 상대적으로 매우 작으며, 상호 관련성이 높은 키워드 쌍들의 그룹이 밀집되어 있음을 보였다. 이는 최대 연결 요소에 대응하는 연구 분야가 크지 않으며 여러 소규모의 연구 주제들이 느슨한 형태로 연결되어 있음을 암시한다. 이러한 분석 결과들은 단순히 개별 키워드의 사용 빈도수 등을 분석하는 전통적인 방식으로는 얻기 어렵다는 점에서 본 논문에서 제안한 지식지도가 연구동향 분석의 방법이 될 수 있다.
데이타를 효과적으로 다루기 위한 방법으로 데이타에 부가정보를 추가하는 TopicMap이나 RDF같은 지식맵에 대한 연구가 늘고 있다. 하지만 기존의 연구는 정보표현과 기술, 응용방안에 대한 연구가 주를 이루고 있으며 구현과 서비스에 대한 연구는 부족한 상태이다. 본 논문에서는 TopicMap 시스템에서의 캐쉬 관리 기능의 구현을 통해 실질적인 지식맵 서비스를 지원하기 위해 고려해야 할 부분 중에서 지식맵의 효과적인 접근을 지원하기 위한 방법을 제안하였다. 먼저 기존 탐색방법의 장점을 최대한 수용하는 탐색 기법을 제안하고 이러한 환경하에서 지식맵 전송 효율을 향상시키고자 지식맵이 가지는 정보를 이용하는 캐쉬기법을 제안하였다. 본 논문에서 제안한 캐쉬기법은 어플리케이션의 접근 형태에 따른 물리, 논리적 단위로 정보를 캐쉬하는 기존의 방식과 달리 사용자가 지식을 접근하는 관점에서 효율을 높이고자 하였다. 즉 지식맵이 이미 자신에 대한 부가 정보뿐만 아니라 다른 지식간의 연관관계와 같은 정보를 가지고 있으므로 이러한 정보를 클러스터링 요소로 이용, 실제 사용 자가 지식맵을 탐색하는데 있어 접근확률이 높도록 캐쉬집합을 생성하도록 하였다. 또한 캐쉬집합을 교체 하는 방법에 있어서도 지식맵의 그래프 관계와 같은 정보의 연관성을 이용, 필요한 부분만을 전송함으로써 효율을 높이는 방법을 제안하였다.
현재 국내 경제는 그 어느 때 보다 심각한 전환기에 처해 있다. 과거 한국이 갖고 있던 장점은 우수한 노동력이었으나 이제는 더 이상 경쟁력의 원천이 될 수 없다 남은 유일한 방법은 인적자원의 창조적 활용이다. 여기서 인적 자원은 산업사회의 단순한 노동력이 아닌 인력의 질, 즉 지식이다. 기업지식체계는 기업의 무형 지적자산을 체계적으로 창출, 축적, 활용하는 기반이며 지식경영의 핵심 기술이다. 본 논문은 지식 생산이 기업경쟁력 제고의 핵심으로 점차 그 중요성이 증대되고 있음을 주목하여 지식 창조적 기업 지식 체계를 위한 개념적 연구 모형을 제안한다 연구모형으로 우선 기업지식 창출과정이 소개되며 기업지식 형태와 연관관계가 파악된다. 이 지식창조과정에 근거하여 지식 사용자환경, 지식마이닝. 지식활용, 지식관리 서브시스템. 지식 리파지토리로 구성된 기업지식체계가 제시된다. 본 연구 모형은 향후 여타 지식경영 연구의 출발점으로 사용될 수 있도록 유연하게 구성되는데 중점이 주어졌다.
본 연구의 목적은 이용자 지향적인 정보검색을 수행하기 위한 질의확장용 지식베이스를 구축하는 것이다. 이를 위해 개념기반 정보검색방법과 통계적 기반 정보검색방법을 이용한 지식베이스 구축에 관련된 다양한 이론 연구를 수행하였다. 이들 지식베이스 구축방법에 있어서 공통된 가설은 연관용어의 출현은 문헌집합내의 동시출현 빈도임을 재확인하였고, 이 가설을 근거로 색인파일 알고리즘과 부울 논리의 And 연산자를 이용하여 질의확장용 지식베이스를 구축하였다. 본 지식베이스의 실험 주제는 교육학이며, 교육학개론이란 단행본을 이용하여 색인어들의 연관용어를 자동으로 제시해줄수 있는 실험용 지식베이스를 구축하였다. 실험용 지식베이스는 자연어색인방법과 통제어색인방법을 이용하여 두 개의 지식베이스를 구축해 각 지식베이스 시스템의 질의확장 성능에 대한 평가 작업을 수행하였다.
협력적 여과 시스템은 사용자가 검색하고 읽었던 웹문서를 기반으로 사용자 군집을 생성하여 웹문서의 정확한 추천을 가능하게 한다. 이러한 목적으로 설계된 다양한 알고리즘이 있으나 속도가 느리거나 정확도가 낮다는 등의 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘인 CUG알고리즘은 사용자 군집을 생성하기 위해 Apriori 알고리즘, Native Bayes 알고리즘을 이용한다. Apriori 알고리즘은 연관 단어 지식 베이스를 구축하고, Native Bayes 알고리즘은 구축된 연관 단어 지식 베이스에 가중치를 추가하며, 사용자가 검색하여 읽은 웹문서를 클래스별로 분류한다. CUG 알고리즘은 분류된 웹문서를 기반으로 하여 사용자 군집을 만든다. 이러한 방법으로 설계된 CUG 알고리즘은 사용자들이 사용할 문서를 미리 검색하여 저장함에 의해 정보검색의 효율성을 향상시키는데 사용될 수 있다. 본 논문에서 설계한 CUG 알고리즘의 선능을 평가하기 위하여 기존의 K-means 방법과 Gibbs샘플링 방법에 의한 군집과 비교한다.
오늘날 지식을 기반으로 하는 고도의 정보사회로 나아가는 시점에서 우리는 대량의 데이터 속에서 필요한 지식을 찾아내는 것에 초점을 모으게 되었다. 따라서 대량의 데이터 속에서 필요한 지식을 자동으로 찾아내는 데이터 마이닝에 대한 연구가 활발히 진행되고 있다. 데이터 마이닝은 대용량의 데이터를 대상으로 하기 때문에 정확도뿐만이 아니라 소요시간도 중요하기 때문에 성능 향상을 위한 알고리즘들이 많이 개발되었다. 데이터 마이닝의 성능을 향상시키기 위해서 가장 좋은 방법이 데이터베이스의 스캔의 횟수를 줄이는 것이다. 본 논문에서는 연관 규칙 탐사에서 빈발 항목 집합을 찾아내는 부분을 이진 표현을 이용하여 좀 더 성능을 향상시킬 수 있는 알고리즘을 제안한다.
무형적인 자산인 지식자본(Intellectual capital)은 서비스업 분야의 기업조직에서 성과를 높이는 역할을 한다고 알려져 있다. 이에 본 연구는 한국의 은행을 대상으로 지식자본과 은행의 성과와의 연관성을 분석하였다. 지식자본으로 인한 재무성과를 측정하기 위하여 지식자본의 가치측정 수단이고 부가가치의 일종인 VAIC(Value Added Intellectual Capital Coefficient)을 이용하였다. 지식자본도 세부항목으로 구분하면 인적자본, 조직자본, 물리적 자본으로 구분되고 그 각각의 영향도 분석하였다. 방법상으로는 은행의 지식자본의 부가가치(VAIC), 구조적자본 효율성(SCE), 인적자본 효율성(HCE), 자본 효율성(CEE), 은행의 규모, 총대출 대비 대손충당금 비율, 총자산 대비 대출액 비율 등의 변수와 은행의 성과(performance)와의 관련성을 회귀분석하여 연관성을 분석하였다. 그 결과를 보면, VAIC는 은행의 재무적인 성과에 1% 수준에서 유의한 정(+)의 영향을 미치는 것으로 확인되었고 은행의 규모도 1%의 수준에서 유의한 정(+)의 영향을 미치는 것으로 확인되었다. 이러한 결과는 선행의 연구에서도 공통적으로 나타난 결과로 은행의 지식자본과 은행규모가 은행의 성과에 중요한 영향을 미친다는 것을 알 수 있다.
스마트 홈에서 발생하는 다양한 형태의 오류는 스마트 홈의 신뢰성을 저하시키기 때문에 스마트 홈에서 오류의 검출 및 복구를 위한 연구가 그 동안 진행되어 왔으나, 이들 대부분은 장치의 기능적 고장이나 소프트웨어의 오동작 등에 한정되어 있고, 장치간의 연관 관계에서 발생하는 오류에 대한 것은 없었다. 본 논문에서는 장치간의 연관 관계를 규칙으로 정의하고, 규칙의 만족 여부에 따라 컨텍스트를 두 집합으로 구분한 다음, 장치간의 연관 관계에서 발생하는 오류의 증상과 원인을 정의하는 오류 진단 지식 생성 방법을 제시한다. 향후, 스마트 홈에 적용하여 이 방법을 장치들의 연관성에 의해 발생하는 오류의 탐지와 그 원인의 식별이 실시간으로 가능하다.
데이터 마이닝을 통해 기업은 웹사이트상의 패턴을 의미 있는 정보로 종합해내고 인터넷 상의 고객들과 예상치를 이해하고 연관시킬수 있게 된다. 데이터와 웹이 제공하는 방대한 사업지식의 흐름에 근거한 웹 마이닝은 온라인 고객과의 관계를 생성하고 유지시키며 생산성 있는 온라인 상점의 최전선을 구축하는데 있어 결정적 열쇠가 되는 것이다.
정보화 시대에 정보의 양이 폭발적으로 증가함에 따라 데이터 마이닝(Data Mining) 또는 데이터베이스에서의 지식 발견이라 불리는 분야가 새로운 정보기술의 활용방법으로 대두되었다. 데이터 마이닝의 한 기법인 연관 규칙 탐사를 위한 자료 구조로 그 동안 해쉬 트리, prefix 트리, 이진 트리 구조 등이 제안되었다. 본 논문에서는 연관 규칙 탐사를 위한 효율적인 자료 구조를 제안하고 실험을 통해 해쉬 트리보다 그 성능이 우수함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.