• Title/Summary/Keyword: 지식변환

Search Result 367, Processing Time 0.027 seconds

Overlapped Object Recognition Using Extended Local Features (확장된 지역특징을 이용한 중첩된 물체 인식)

  • 백중환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1465-1474
    • /
    • 1992
  • This paper describes a new overlapped object recognition method using extended local features. At first, we extract the extended local features consisting of corners, arcs, parallel-lines, and corner-arcs from the images consisting of model objects. Based on the extended local features we construct a knowledge-base. In order to match objects, we also extract the extended local features from the input image, and then check the compatibility between the extracted features and the features in the knowledge-base. From the set of compatible features, we compute geometric transforms. If any geometric transforms are clustered, we generate the hypothesis of the objects as the centers of the clusters, and then verify the hypothesis by a reverse geometric transform. An experiment shows that the proposed method increases the recognition rate and the accuracy as compared with existing methods.

  • PDF

A Study on Didactic Transposition of Correlation (상관관계의 교수학적 변환에 관한 연구)

  • 이경화
    • School Mathematics
    • /
    • v.6 no.3
    • /
    • pp.251-266
    • /
    • 2004
  • The purpose of this study is to analyze the concept of correlation in statistics, secondary mathematics textbooks, foreign mathematics textbooks in point of didactic transposition theory. It is investigated that the relevance and alternative ways of introducing correlation concept without correlation coefficient. In addition, we compare five Korean secondary textbooks and find out characteristics on didactic transposition of correlation. We end pedagogical implications of the analyses presented and general conclusions concerning the didactic transposition of correlation.

  • PDF

A probabilistic knowledge model for analyzing heart rate variability (심박수변이도 분석을 위한 확률적 지식기반 모형)

  • Son, Chang-Sik;Kang, Won-Seok;Choi, Rock-Hyun;Park, Hyoung-Seob;Han, Seongwook;Kim, Yoon-Nyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.3
    • /
    • pp.61-69
    • /
    • 2015
  • This study presents a probabilistic knowledge discovery method to interpret heart rate variability (HRV) based on time and frequency domain indexes, extracted using discrete wavelet transform. The knowledge induction algorithm was composed of two phases: rule generation and rule estimation. Firstly, a rule generation converts numerical attributes to intervals using ROC curve analysis and constructs a reduced ruleset by comparing consistency degree between attribute-value pairs with different decision values. Then, we estimated three measures such as rule support, confidence, and coverage to a probabilistic interpretation for each rule. To show the effectiveness of proposed model, we evaluated the statistical discriminant power of five rules (3 for atrial fibrillation, 1 for normal sinus rhythm, and 1 for both atrial fibrillation and normal sinus rhythm) generated using a data (n=58) collected from 1 channel wireless holter electrocardiogram (ECG), i.e., HeartCall$^{(R)}$, U-Heart Inc. The experimental result showed the performance of approximately 0.93 (93%) in terms of accuracy, sensitivity, specificity, and AUC measures, respectively.

FBDtoVHDL: An Automatic Translation from FBD into VHDL for FPGA Development (FBDtoVHDL: FPGA 개발을 위한 FBD에서 VHDL로의 자동 변환)

  • Kim, Jaeyeob;Kim, Eui-Sub;Yoo, Junbeom;Lee, Young Jun;Choi, Jong-Gyun
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.569-578
    • /
    • 2016
  • The PLC (Programmable Logic Controller) has been widely used for the development of digital control system of nuclear power plant. The PLC has high maintenance costs and increasing complexity, hence, FPGA (Field Programmable Gate Array) based digital control system has been considered as an alternative. However, the development of FPGA based digital control system is a challenge for PLC engineers because they are required to learn about new language to develop FPGA and knowledge and know-how acquired in the development of PLC is not transferable. In this study, we proposed and implemented an automatic translation tool for translation of FBD (Function Block Diagram), a programming language of PLC software, into VHDL (VHSIC Hardware Description Language). Automatically translating the FBD to VHDL using this tool allows PLC engineers to develop FPGA without any knowledge of the hardware description language.

Conversion of Large RDF Data using Hash-based ID Mapping Tables with MapReduce Jobs (맵리듀스 잡을 사용한 해시 ID 매핑 테이블 기반 대량 RDF 데이터 변환 방법)

  • Kim, InA;Lee, Kyu-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.236-239
    • /
    • 2021
  • With the growth of AI technology, the scale of Knowledge Graphs continues to be expanded. Knowledge Graphs are mainly expressed as RDF representations that consist of connected triples. Many RDF storages compress and transform RDF triples into the condensed IDs. However, if we try to transform a large scale of RDF triples, it occurs the high processing time and memory overhead because it needs to search the large ID mapping table. In this paper, we propose the method of converting RDF triples using Hash-based ID mapping tables with MapReduce, which is the software framework with a parallel, distributed algorithm. Our proposed method not only transforms RDF triples into Integer-based IDs, but also improves the conversion speed and memory overhead. As a result of our experiment with the proposed method for LUBM, the size of the dataset is reduced by about 3.8 times and the conversion time was spent about 106 seconds.

  • PDF

Compression Conversion and Storing of Large RDF datasets based on MapReduce (맵리듀스 기반 대량 RDF 데이터셋 압축 변환 및 저장 방법)

  • Kim, InA;Lee, Kyong-Ha;Lee, Kyu-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.487-494
    • /
    • 2022
  • With the recent demand for analysis using data, the size of the knowledge graph, which is the data to be analyzed, gradually increased, reaching about 82 billion edges when extracted from the web as a knowledge graph. A lot of knowledge graphs are represented in the form of Resource Description Framework (RDF), which is a standard of W3C for representing metadata for web resources. Because of the characteristics of RDF, existing RDF storages have the limitations of processing time overhead when converting and storing large amounts of RDF data. To resolve these limitations, in this paper, we propose a method of compressing and converting large amounts of RDF data into integer IDs using MapReduce, and vertically partitioning and storing them. Our proposed method demonstrated a high performance improvement of up to 25.2 times compared to RDF-3X and up to 3.7 times compared to H2RDF+.

A study on integration of semantic topic based Knowledge model (의미적 토픽 기반 지식모델의 통합에 관한 연구)

  • Chun, Seung-Su;Lee, Sang-Jin;Bae, Sang-Tea
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.181-183
    • /
    • 2012
  • 최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험(Simulation) 모형의 기반이 된다. 본 연구에서는 이러한 의미 기반 지식모델을 통합에 있어 텍스트 마이닝을 통해 도출된 토픽(Topic) 모델 간 통합 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다. 통합된 의미 기반 지식모델은 토픽 간의 구조적 규칙과 정도 중심성, 근접 중심성, 매개 중심성 등 관계적 의미분석이 가능하며 대규모 비정형 문서의 의미 분석과 활용에 실질적인 기반 연구가 될 수 있다.

A Study on the Processing of Imprecision Data by Rough Sets (러프집합에 의한 불완전 데이터의 처리에 관한 연구)

  • 정구범;김두완;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.11-15
    • /
    • 1998
  • 일반적으로 러프집합은 지식베이스 시스템에서 근사공간을 이용한 불확실한 데이터의 분류, 추론 및 의사결정 등에 사용된다. 지식베이스 시스템의 데이터 중에서 연속적인 구간 특성을 갖는 정량적 속성값이 불연속적일 때 중복 또는 불일치 등의 불확실성이 발생된다. 본 논문은 러프집합의 정량적 속성값들의 정성적 속성으로 변환시킬 때 식별 불가능 영역에 있는 정량적 속성값들을 명확한 경계를 갖는 보조구간으로 분리하여 불확실성을 제거함으로써 러프집합의 분류능력을 향상시키는 방법을 제안한다.

  • PDF

A Study on the Extraction of Knowledge for Image Understanding (영상이해를 위한 지식유출에 관한 연구)

  • 곽윤식;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.757-772
    • /
    • 1993
  • This paper describes the knowledge extraction for image understanding in knowledge based system. The current set of low level processes operate on the numerical pixel arrays, to segment the image into region and to convert the image into directional image, and to calculate feature for these regions. The current set of intermedate level processes operate on the results of earlier knowledge source to build more complex representations of the data. We have grouped into thee categories : feature based classification, geometric token relation, perceptual organization and grouping.

  • PDF