• Title/Summary/Keyword: 지시자 크리깅

Search Result 8, Processing Time 0.02 seconds

Comparison of Univariate Kriging Algorithms for GIS-based Thematic Mapping with Ground Survey Data (현장 조사 자료를 이용한 GIS 기반 주제도 작성을 위한 단변량 크리깅 기법의 비교)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.321-338
    • /
    • 2009
  • The objective of this paper is to compare spatial prediction capabilities of univariate kriging algorithms for generating GIS-based thematic maps from ground survey data with asymmetric distributions. Four univariate kriging algorithms including traditional ordinary kriging, three non-linear transform-based kriging algorithms such as log-normal kriging, multi-Gaussian kriging and indicator kriging are applied for spatial interpolation of geochemical As and Pb elements. Cross validation based on a leave-one-out approach is applied and then prediction errors are computed. The impact of the sampling density of the ground survey data on the prediction errors are also investigated. Through the case study, indicator kriging showed the smallest prediction errors and superior prediction capabilities of very low and very high values. Other non-linear transform based kriging algorithms yielded better prediction capabilities than traditional ordinary kriging. Log-normal kriging which has been widely applied, however, produced biased estimation results (overall, overestimation). It is expected that such quantitative comparison results would be effectively used for the selection of an optimal kriging algorithm for spatial interpolation of ground survey data with asymmetric distributions.

RMR Evaluation by Integration of Geophysical and Borehole Data using Non-linear Indicator Transform and 3D Kriging (암반등급 해석을 위한 비선형 지시자 변환과 3차원 크리깅 기술의 물리탐사 및 시추자료에 대한 적용)

  • Oh, Seo-Khoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.429-435
    • /
    • 2005
  • 3D RMR (Rock Mass Rating) analysis has been performed by applying the Geostatistical integration technique for geophysical and borehole data. Of the various geostatistical techniques for the integrated data analysis, in this study, we applied the SKlvm (Simple Kriging with local varying means) method that substitutes the values of the interpreted geophysical result with the mean values of the RMR at the location to be inferred. The substitution is performed by the indicator transform between the result of geophysical interpretation and the observed RMR values at borehole sites. The used geophysical data are the electrical resistivity and MT result, and 10 borehole sites are investigated to obtain the RMR values. This integrated analysis makes the interpretation to be more practical for identifying the realistic RMR distribution that supports the regional geological situation.

Application of Indicator Geostatistics for Probabilistic Uncertainty and Risk Analyses of Geochemical Data (지화학 자료의 확률론적 불확실성 및 위험성 분석을 위한 지시자 지구통계학의 응용)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.301-312
    • /
    • 2010
  • Geochemical data have been regarded as one of the important environmental variables in the environmental management. Since they are often sampled at sparse locations, it is important not only to predict attribute values at unsampled locations, but also to assess the uncertainty attached to the prediction for further analysis. The main objective of this paper is to exemplify how indicator geostatistics can be effectively applied to geochemical data processing for providing decision-supporting information as well as spatial distribution of the geochemical data. A whole geostatistical analysis framework, which includes probabilistic uncertainty modeling, classification and risk analysis, was illustrated through a case study of cadmium mapping. A conditional cumulative distribution function (ccdf) was first modeled by indicator kriging, and then e-type estimates and conditional variance were computed for spatial distribution of cadmium and quantitative uncertainty measures, respectively. Two different classification criteria such as a probability thresholding and an attribute thresholding were applied to delineate contaminated and safe areas. Finally, additional sampling locations were extracted from the coefficient of variation that accounts for both the conditional variance and the difference between attribute values and thresholding values. It is suggested that the indicator geostatistical framework illustrated in this study be a useful tool for analyzing any environmental variables including geochemical data for decision-making in the presence of uncertainty.

Quantitative Comparison of Univariate Kriging Algorithms for Radon Concentration Mapping (라돈 농도 분포도 작성을 위한 단변량 크리깅 기법의 정량적 비교)

  • KWAK, Geun-Ho;KIM, Yong-Jae;CHANG, Byung-Uck;PARK, No-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.71-84
    • /
    • 2017
  • Radon, which enters the interior environment from soil, rocks, and groundwater, is a radioactive gas that poses a serious risk to humans. Indoor radon concentrations are measured to investigate the risk of radon gas exposure and reliable radon concentration mapping is then performed for further analysis. In this study, we compared the predictive performance of various univariate kriging algorithms, including ordinary kriging and three nonlinear transform-based kriging algorithms (log-normal, multi-Gaussian, and indicator kriging), for mapping radon concentrations with an asymmetric distribution. To compare and analyze the predictive performance, we carried out jackknife-based validation and analyzed the errors according to the differences in the data intervals and sampling densities. From a case study in South Korea, the overall nonlinear transform-based kriging algorithms showed better predictive performance than ordinary kriging. Among the nonlinear transform-based kriging algorithms, log-normal kriging had the best performance, followed by multi-Gaussian kriging. Ordinary kriging was the best for predicting high values within the spatial pattern. The results from this study are expected to be useful in the selection of kriging algorithms for the spatial prediction of data with an asymmetric distribution.

Geostatistical Integration of Seismic Velocity and Resistivity Data for Probabilistic Evaluation of Rock Quality (탄성파 속도와 전기비저항 자료의 지구통계학적 복합해석에 의한 암반등급의 확률적 평가)

  • Oh, Seok-Hoon;Suh, Baek-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.293-298
    • /
    • 2007
  • A new way to integrate various geophysical information for evaluation of RQD was developed. In this study, we does not directly define the RQD value where borehole data are not sampled. Instead, we infer the probability of RQD values with prior probability of data directly obtained from borehole, and secondary supporting probability from resistivity and seismic tomography data. First, we applied the geostatstical indicator kriging to get prior probability of RQD value, and indicator kriging with soft data to get the supporting probability from resistivity and seismic data. And we finally applied the permanence ratio rule to integrate these information. The finally obtained result was also analyzed to fully utilize the probabilistic features. For example, we showed the probability of wrongly classifying the RQD evaluation and vice versa. This kind of analytical result may be used for decision making process based on the geophysical exploration.

Geostatistical Simulation of Compositional Data Using Multiple Data Transformations (다중 자료 변환을 이용한 구성 자료의 지구통계학적 시뮬레이션)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • This paper suggests a conditional simulation framework based on multiple data transformations for geostatistical simulation of compositional data. First, log-ratio transformation is applied to original compositional data in order to apply conventional statistical methodologies. As for the next transformations that follow, minimum/maximum autocorrelation factors (MAF) and indicator transformations are sequentially applied. MAF transformation is applied to generate independent new variables and as a result, an independent simulation of individual variables can be applied. Indicator transformation is also applied to non-parametric conditional cumulative distribution function modeling of variables that do not follow multi-Gaussian random function models. Finally, inverse transformations are applied in the reverse order of those transformations that are applied. A case study with surface sediment compositions in tidal flats is carried out to illustrate the applicability of the presented simulation framework. All simulation results satisfied the constraints of compositional data and reproduced well the statistical characteristics of the sample data. Through surface sediment classification based on multiple simulation results of compositions, the probabilistic evaluation of classification results was possible, an evaluation unavailable in a conventional kriging approach. Therefore, it is expected that the presented simulation framework can be effectively applied to geostatistical simulation of various compositional data.

Influence of Loss Function on Determination of Optimal Thickness of Consolidating Layer for Songdo New City (손실함수가 송도신도시의 최적 압밀층 두께 결정에 미치는 영향)

  • Kim, Dong-Hee;Ryu, Dong-Woo;Chae, Young-Ho;Park, Jung-Kyu;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.51-61
    • /
    • 2011
  • Spatial estimation of the thickness and depth of the geological profile has been regarded as an important procedure for the design of soft ground. A minimum variance criterion, which has often been used in traditional kriging techniques, does not always guarantee the optima1 estimates for the decision-making process in geotechnical engineering. In this study, a geostatistica; framework is used to determine the optimal thickness of the consolidation layer and the optimal area that needs the adoption of prefabricated vertical drains via indicator kriging and loss function. From the exemplary problem, different optimal estimates can be obtained depending on the loss function chosen. The design procedure and method considering the minimum expected loss presented in this paper can be used in the decision-making process for geotechnical engineering design.

Geostatistical Interpretation of Sparsely Obtained Seismic Data Combined with Satellite Gravity Data (탄성파 자료의 해양분지 구조 해석 결과 향상을 위한 인공위성 중력자료의 지구통계학적 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kwon, Byung-Doo;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.252-258
    • /
    • 2007
  • We have studied the feasibility of geostatistics approach to enhancing analysis of sparsely obtained seismic data by combining with satellite gravity data. The shallow depth and numerous fishing nets in The Yellow Sea, west of Korea, makes it difficult to do seismic surveys in this area. Therefore, we have attempted to use geostatistics to integrate the seismic data along with gravity data. To evaluate the feasibility of this approach, we have extracted only a few seismic profile data from previous surveys in the Yellow Sea and performed integrated analysis combining with the results from gravity data under the assumption that seismic velocity and density have a high physical correlation. First, we analyzed the correlation between extracted seismic profiles and depths obtained from gravity inversion. Next, we transferred the gravity depth to travel time using non-linear indicator transform and analyze residual values by kriging with varying local means. Finally, the reconstructed time structure map was compared with the original seismic section given in the previous study. Our geostatistical approach demonstrates relatively satisfactory results and especially, in the boundary area where seismic lines are sparse, gives us more in-depth information than previously available.